417 resultados para Pre-processing
Resumo:
Introduction Malnutrition is common among hospitalised patients, with poor follow-up of nutrition support post-discharge. Published studies on the efficacy of ambulatory nutrition support (ANS) for malnourished patients post-discharge are scarce. The aims of this study were to evaluate the rate of dietetics follow-up of malnourished patients post-discharge, before (2008) and after (2010) implementation of a new ANS service, and to evaluate nutritional outcomes post-implementation. Materials and Methods Consecutive samples of 261 (2008) and 163 (2010) adult inpatients referred to dietetics and assessed as malnourished using Subjective Global Assessment (SGA) were enrolled. All subjects received inpatient nutrition intervention and dietetic outpatient clinic follow-up appointments. For the 2010 cohort, ANS was initiated to provide telephone follow-up and home visits for patients who failed to attend the outpatient clinic. Subjective Global Assessment, body weight, quality of life (EQ-5D VAS) and handgrip strength were measured at baseline and five months post-discharge. Paired t-test was used to compare pre- and post-intervention results. Results In 2008, only 15% of patients returned for follow-up with a dietitian within four months post-discharge. After implementation of ANS in 2010, the follow-up rate was 100%. Mean weight improved from 44.0 ± 8.5kg to 46.3 ± 9.6kg, EQ-5D VAS from 61.2 ± 19.8 to 71.6 ± 17.4 and handgrip strength from 15.1 ± 7.1 kg force to 17.5 ± 8.5 kg force; p<0.001 for all. Seventy-four percent of patients improved in SGA score. Conclusion Ambulatory nutrition support resulted in significant improvements in follow-up rate, nutritional status and quality of life of malnourished patients post-discharge.
Resumo:
The assessment of choroidal thickness from optical coherence tomography (OCT) images of the human choroid is an important clinical and research task, since it provides valuable information regarding the eye’s normal anatomy and physiology, and changes associated with various eye diseases and the development of refractive error. Due to the time consuming and subjective nature of manual image analysis, there is a need for the development of reliable objective automated methods of image segmentation to derive choroidal thickness measures. However, the detection of the two boundaries which delineate the choroid is a complicated and challenging task, in particular the detection of the outer choroidal boundary, due to a number of issues including: (i) the vascular ocular tissue is non-uniform and rich in non-homogeneous features, and (ii) the boundary can have a low contrast. In this paper, an automatic segmentation technique based on graph-search theory is presented to segment the inner choroidal boundary (ICB) and the outer choroidal boundary (OCB) to obtain the choroid thickness profile from OCT images. Before the segmentation, the B-scan is pre-processed to enhance the two boundaries of interest and to minimize the artifacts produced by surrounding features. The algorithm to detect the ICB is based on a simple edge filter and a directional weighted map penalty, while the algorithm to detect the OCB is based on OCT image enhancement and a dual brightness probability gradient. The method was tested on a large data set of images from a pediatric (1083 B-scans) and an adult (90 B-scans) population, which were previously manually segmented by an experienced observer. The results demonstrate the proposed method provides robust detection of the boundaries of interest and is a useful tool to extract clinical data.
Resumo:
The selection of optimal camera configurations (camera locations, orientations, etc.) for multi-camera networks remains an unsolved problem. Previous approaches largely focus on proposing various objective functions to achieve different tasks. Most of them, however, do not generalize well to large scale networks. To tackle this, we propose a statistical framework of the problem as well as propose a trans-dimensional simulated annealing algorithm to effectively deal with it. We compare our approach with a state-of-the-art method based on binary integer programming (BIP) and show that our approach offers similar performance on small scale problems. However, we also demonstrate the capability of our approach in dealing with large scale problems and show that our approach produces better results than two alternative heuristics designed to deal with the scalability issue of BIP. Last, we show the versatility of our approach using a number of specific scenarios.
Resumo:
The coupling of kurtosis based-indexes and envelope analysis represents one of the most successful and widespread procedures for the diagnostics of incipient faults on rolling element bearings. Kurtosis-based indexes are often used to select the proper demodulation band for the application of envelope-based techniques. Kurtosis itself, in slightly different formulations, is applied for the prognostic and condition monitoring of rolling element bearings, as a standalone tool for a fast indication of the development of faults. This paper shows for the first time the strong analytical connection which holds for these two families of indexes. In particular, analytical identities are shown for the squared envelope spectrum (SES) and the kurtosis of the corresponding band-pass filtered analytic signal. In particular, it is demonstrated how the sum of the peaks in the SES corresponds to the raw 4th order moment. The analytical results show as well a link with an another signal processing technique: the cepstrum pre-whitening, recently used in bearing diagnostics. The analytical results are the basis for the discussion on an optimal indicator for the choice of the demodulation band, the ratio of cyclic content (RCC), which endows the kurtosis with selectivity in the cyclic frequency domain and whose performance is compared with more traditional kurtosis-based indicators such as the protrugram. A benchmark, performed on numerical simulations and experimental data coming from two different test-rigs, proves the superior effectiveness of such an indicator. Finally a short introduction to the potential offered by the newly proposed index in the field of prognostics is given in an additional experimental example. In particular the RCC is tested on experimental data collected on an endurance bearing test-rig, showing its ability to follow the development of the damage with a single numerical index.
Resumo:
Cyclostationary models for the diagnostic signals measured on faulty rotating machineries have proved to be successful in many laboratory tests and industrial applications. The squared envelope spectrum has been pointed out as the most efficient indicator for the assessment of second order cyclostationary symptoms of damages, which are typical, for instance, of rolling element bearing faults. In an attempt to foster the spread of rotating machinery diagnostics, the current trend in the field is to reach higher levels of automation of the condition monitoring systems. For this purpose, statistical tests for the presence of cyclostationarity have been proposed during the last years. The statistical thresholds proposed in the past for the identification of cyclostationary components have been obtained under the hypothesis of having a white noise signal when the component is healthy. This need, coupled with the non-white nature of the real signals implies the necessity of pre-whitening or filtering the signal in optimal narrow-bands, increasing the complexity of the algorithm and the risk of losing diagnostic information or introducing biases on the result. In this paper, the authors introduce an original analytical derivation of the statistical tests for cyclostationarity in the squared envelope spectrum, dropping the hypothesis of white noise from the beginning. The effect of first order and second order cyclostationary components on the distribution of the squared envelope spectrum will be quantified and the effectiveness of the newly proposed threshold verified, providing a sound theoretical basis and a practical starting point for efficient automated diagnostics of machine components such as rolling element bearings. The analytical results will be verified by means of numerical simulations and by using experimental vibration data of rolling element bearings.
Resumo:
The diagnostics of mechanical components operating in transient conditions is still an open issue, in both research and industrial field. Indeed, the signal processing techniques developed to analyse stationary data are not applicable or are affected by a loss of effectiveness when applied to signal acquired in transient conditions. In this paper, a suitable and original signal processing tool (named EEMED), which can be used for mechanical component diagnostics in whatever operating condition and noise level, is developed exploiting some data-adaptive techniques such as Empirical Mode Decomposition (EMD), Minimum Entropy Deconvolution (MED) and the analytical approach of the Hilbert transform. The proposed tool is able to supply diagnostic information on the basis of experimental vibrations measured in transient conditions. The tool has been originally developed in order to detect localized faults on bearings installed in high speed train traction equipments and it is more effective to detect a fault in non-stationary conditions than signal processing tools based on spectral kurtosis or envelope analysis, which represent until now the landmark for bearings diagnostics.
Resumo:
The signal processing techniques developed for the diagnostics of mechanical components operating in stationary conditions are often not applicable or are affected by a loss of effectiveness when applied to signals measured in transient conditions. In this chapter, an original signal processing tool is developed exploiting some data-adaptive techniques such as Empirical Mode Decomposition, Minimum Entropy Deconvolution and the analytical approach of the Hilbert transform. The tool has been developed to detect localized faults on bearings of traction systems of high speed trains and it is more effective to detect a fault in non-stationary conditions than signal processing tools based on envelope analysis or spectral kurtosis, which represent until now the landmark for bearings diagnostics.
Resumo:
Dermal wound healing is a biochemical and cellular process critical to life. While the majority of the population will only ever experience successful wound healing outcomes, some 1-3 % of those aged over 65 years will experience wound healing delay or perpetuation. These hard-to-heal wounds are comprised of degraded and dysfunctional extracellular matrix, yet the integrity of this structure is critical in the processes of normal wound healing. As such, extracellular matrix replacements have been devised that can replace dysfunctional extracellular matrix in hard-to-heal wounds with the aim of restoring normal wound healing processes. Here we evaluated a novel synthetic matrix protein for its ability to act as an acellular scaffold that can replace dysfunctional extracellular matrix. In this regard the synthetic protein demonstrated an ability to rapidly adsorb to the dermal surface, permit cell attachment and facilitate the cellular functions essential to wound healing. When applied to deep partial thickness wounds in a porcine animal model the matrix protein also demonstrated the ability to reduce wound duration. These data provide evidence that the synthetic matrix protein has the ability to function as an acellular scaffold for wound healing purposes.
Resumo:
This paper explores the use of guided narrative reflection as a strategy used with high-achieving non-Indigenous pre-service teachers in Australia on teaching practicum. We suggest that reflections (and subsequent dialogue) can provide opportunities for non-Indigenous preservice teachers to re-think their beliefs and actions in ways that may intervene in the teaching that often causes educational disadvantage for Aboriginal and Torres Strait Islander students.
Resumo:
Incorporating a learner’s level of cognitive processing into Learning Analytics presents opportunities for obtaining rich data on the learning process. We propose a framework called COPA that provides a basis for mapping levels of cognitive operation into a learning analytics system. We utilise Bloom’s taxonomy, a theoretically respected conceptualisation of cognitive processing, and apply it in a flexible structure that can be implemented incrementally and with varying degree of complexity within an educational organisation. We outline how the framework is applied, and its key benefits and limitations. Finally, we apply COPA to a University undergraduate unit, and demonstrate its utility in identifying key missing elements in the structure of the course.
Resumo:
A numerical procedure based on the plastic hinge concept for study of the structural behaviour of steel framed structures exposed to fire is described. Most previous research on fire analysis considered the structural performance due to rising temperature. When strain reversal occurs during the cooling phase, the stress–strain curve is different. The plastic deformation is incorporated into the stress–strain curve to model the strain reversal effect in which unloading under elastic behaviour is allowed. This unloading response is traced by the incremental–iterative Newton–Raphson method. The mechanical properties of the steel member in the present fire analysis follows both Eurocode 3 Part 1.2 and BS5950 Part 8, which implicitly allow for thermal creep deformation. This paper presents an efficient fire analysis procedure for predicting thermal and cooling effects on an isolated element and a multi-storey frame. Several numerical and experimental examples related to structural behaviour in cooling phase are studied and compared with results obtained by other researchers. The proposed method is effective in the fire safety design and analysis of a building in a real fire scenario. The scope of investigation is of great significance since a large number of rescuers would normally enter a fire site as soon as the fire is extinguished and during the cooling phase, so a structural collapse can be catastrophic.