358 resultados para Molecular techniques


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we consider the variable order time fractional diffusion equation. We adopt the Coimbra variable order (VO) time fractional operator, which defines a consistent method for VO differentiation of physical variables. The Coimbra variable order fractional operator also can be viewed as a Caputo-type definition. Although this definition is the most appropriate definition having fundamental characteristics that are desirable for physical modeling, numerical methods for fractional partial differential equations using this definition have not yet appeared in the literature. Here an approximate scheme is first proposed. The stability, convergence and solvability of this numerical scheme are discussed via the technique of Fourier analysis. Numerical examples are provided to show that the numerical method is computationally efficient. Crown Copyright © 2012 Published by Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanical vibration properties of single actin filaments from 50 to 288 nm are investigated by the molecular dynamics simulation in this study. The natural frequencies obtained from the molecular simulations agree with those obtained from the analytical solution of the equivalent Euler–Bernoulli beam model. Through the convergence study of the mechanical properties with respect to the filament length, it was found that the Euler–Bernoulli beam model can only be reliably used when the single actin filament is of the order of hundreds of nanometre scale. This molecular investigation not only provides the evidence for the use of the continuum beam model in characterising the mechanical properties of single actin filaments, but also clarifies the criteria for the effective use of the Euler–Bernoulli beam model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Late stage Ovarian Cancer is essentially incurable primarily due to late diagnosis and its inherent heterogeneity. Single agent treatments are inadequate and generally lead to severe side effects at therapeutic doses. It is crucial to develop clinically relevant novel combination regimens involving synergistic modalities that target a wider repertoire of cells and lead to lowered individual doses. Stemming from this premise, this is the first report of two- and three-way synergies between Adenovirus-mediated Purine Nucleoside Phosphorylase based gene directed enzyme prodrug therapy (PNP-GDEPT), docetaxel and/or carboplatin in multidrug-resistant ovarian cancer cells. Methods The effects of PNP-GDEPT on different cellular processes were determined using Shotgun Proteomics analyses. The in vitro cell growth inhibition in differentially treated drug resistant human ovarian cancer cell lines was established using a cell-viability assay. The extent of synergy, additivity, or antagonism between treatments was evaluated using CalcuSyn statistical analyses. The involvement of apoptosis and implicated proteins in effects of different treatments was established using flow cytometry based detection of M30 (an early marker of apoptosis), cell cycle analyses and finally western blot based analyses. Results Efficacy of the trimodal treatment was significantly greater than that achieved with bimodal- or individual treatments with potential for 10-50 fold dose reduction compared to that required for individual treatments. Of note was the marked enhancement in apoptosis that specifically accompanied the combinations that included PNP-GDEPT and accordingly correlated with a shift in the expression of anti- and pro-apoptotic proteins. PNP-GDEPT mediated enhancement of apoptosis was reinforced by cell cycle analyses. Proteomic analyses of PNP-GDEPT treated cells indicated a dowregulation of proteins involved in oncogenesis or cancer drug resistance in treated cells with accompanying upregulation of apoptotic- and tumour- suppressor proteins. Conclusion Inclusion of PNP-GDEPT in regular chemotherapy regimens can lead to significant enhancement of the cancer cell susceptibility to the combined treatment. Overall, these data will underpin the development of regimens that can benefit patients with late stage ovarian cancer leading to significantly improved efficacy and increased quality of life.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mineral svanbergite SrAl 3(PO 4,SO 4) 2(OH) 6 is a hydroxy phosphate-sulphate mineral belonging to the beudantite subgroup of alunites and has been characterised by vibrational spectroscopy. Bands at various wavenumbers were assigned to the different vibrational modes of svanbergite, which were then associated with the structure of the mineral. Bands were primarily assigned to phosphate and sulphate stretching and bending modes. Two symmetric stretching modes for both phosphate and sulphate supported the concept of non-equivalent phosphate and sulphate units in the mineral structure. Bands in the OH stretching region enabled hydrogen bond distances to be calculated. Comparison of the hydrogen bond distances and the calculated hydrogen bond distances from the structure models indicates that hydrogen bonding in svanbergite occurs between the two OH units rather than OH to SO42- units.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Chlamydia pecorum is an obligate intracellular bacterium and the causative agent of reproductive and ocular disease in several animal hosts including koalas, sheep, cattle and goats. C. pecorum strains detected in koalas are genetically diverse, raising interesting questions about the origin and transmission of this species within koala hosts. While the ompA gene remains the most widely-used target in C. pecorum typing studies, it is generally recognised that surface protein encoding genes are not suited for phylogenetic analysis and it is becoming increasingly apparent that the ompA gene locus is not congruent with the phylogeny of the C. pecorum genome. Using the recently sequenced C. pecorum genome sequence (E58), we analysed 10 genes, including ompA, to evaluate the use of ompA as a molecular marker in the study of koala C. pecorum genetic diversity. Results Three genes (incA, ORF663, tarP) were found to contain sufficient nucleotide diversity and discriminatory power for detailed analysis and were used, with ompA, to genotype 24 C. pecorum PCR-positive koala samples from four populations. The most robust representation of the phylogeny of these samples was achieved through concatenation of all four gene sequences, enabling the recreation of a "true" phylogenetic signal. OmpA and incA were of limited value as fine-detailed genetic markers as they were unable to confer accurate phylogenetic distinctions between samples. On the other hand, the tarP and ORF663 genes were identified as useful "neutral" and "contingency" markers respectively, to represent the broad evolutionary history and intra-species genetic diversity of koala C. pecorum. Furthermore, the concatenation of ompA, incA and ORF663 sequences highlighted the monophyletic nature of koala C. pecorum infections by demonstrating a single evolutionary trajectory for koala hosts that is distinct from that seen in non-koala hosts. Conclusions While the continued use of ompA as a fine-detailed molecular marker for epidemiological analysis appears justified, the tarP and ORF663 genes also appear to be valuable markers of phylogenetic or biogeographic divisions at the C. pecorum intra-species level. This research has significant implications for future typing studies to understand the phylogeny, genetic diversity, and epidemiology of C. pecorum infections in the koala and other animal species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The research team recognized the value of network-level Falling Weight Deflectometer (FWD) testing to evaluate the structural condition trends of flexible pavements. However, practical limitations due to the cost of testing, traffic control and safety concerns and the ability to test a large network may discourage some agencies from conducting the network-level FWD testing. For this reason, the surrogate measure of the Structural Condition Index (SCI) is suggested for use. The main purpose of the research presented in this paper is to investigate data mining strategies and to develop a prediction method of the structural condition trends for network-level applications which does not require FWD testing. The research team first evaluated the existing and historical pavement condition, distress, ride, traffic and other data attributes in the Texas Department of Transportation (TxDOT) Pavement Maintenance Information System (PMIS), applied data mining strategies to the data, discovered useful patterns and knowledge for SCI value prediction, and finally provided a reasonable measure of pavement structural condition which is correlated to the SCI. To evaluate the performance of the developed prediction approach, a case study was conducted using the SCI data calculated from the FWD data collected on flexible pavements over a 5-year period (2005 – 09) from 354 PMIS sections representing 37 pavement sections on the Texas highway system. The preliminary study results showed that the proposed approach can be used as a supportive pavement structural index in the event when FWD deflection data is not available and help pavement managers identify the timing and appropriate treatment level of preventive maintenance activities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With well over 700 species, the Tribe Dacini is one of the most species-rich clades within the dipteran family Tephritidae, the true fruit flies. Nearly all Dacini belong to one of two very large genera, Dacus Fabricius and Bactrocera Macquart. The distribution of the genera overlap in or around the Indian subcontinent, but the greatest diversity of Dacus is in Africa and the greatest diversity of Bactrocera is in south-east Asia and the Pacific. The monophyly of these two genera has not been rigorously established, with previous phylogenies only including a small number of species and always heavily biased to one genus over the other. Moreover, the subgeneric taxonomy within both genera is complex and the monophyly of many subgenera has not been explicitly tested. Previous hypotheses about the biogeography of the Dacini based on morphological reviews and current distributions of taxa have invoked an out-of-India hypothesis; however this has not been tested in a phylogenetic framework. We attempted to resolve these issues with a dated, molecular phylogeny of 125 Dacini species generated using 16S, COI, COII and white eye genes. The phylogeny shows that Bactrocera is not monophyletic, but rather consists of two major clades: Bactrocera s.s. and the ‘Zeugodacus group of subgenera’ (a recognised, but informal taxonomic grouping of 15 Bactrocera subgenera). This ‘Zeugodacus’ clade is the sister group to Dacus, not Bactrocera and, based on current distributions, split from Dacus before that genus moved into Africa. We recommend that taxonomic consideration be given to raising Zeugodacus to genus level. Supportive of predictions following from the out-of-India hypothesis, the first common ancestor of the Dacini arose in the mid-Cretaceous approximately 80 mya. Major divergence events occurred during the Indian rafting period and diversification of Bactrocera apparently did not begin until after India docked with Eurasia (50–35 mya). In contrast, diversification in Dacus, at approximately 65 mya, apparently began much earlier than predicted by the out-of-India hypothesis, suggesting that, if the Dacini arose on the Indian plate, then ancestral Dacus may have left the plate in the mid to late Cretaceous via the well documented India–Madagascar–Africa migration route. We conclude that the phylogeny does not disprove the predictions of an out-of-India hypothesis for the Dacini, although modification of the original hypothesis is required.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite their ecological significance as decomposers and their evolutionary significance as the most speciose eusocial insect group outside the Hymenoptera, termite (Blattodea: Termitoidae or Isoptera) evolutionary relationships have yet to be well resolved. Previous morphological and molecular analyses strongly conflict at the family level and are marked by poor support for backbone nodes. A mitochondrial (mt) genome phylogeny of termites was produced to test relationships between the recognised termite families, improve nodal support and test the phylogenetic utility of rare genomic changes found in the termite mt genome. Complete mt genomes were sequenced for 7 of the 9 extant termite families with additional representatives of each of the two most speciose families Rhinotermitidae (3 of 7 subfamilies) and Termitidae (3 of 8 subfamilies). The mt genome of the well supported sister group of termites, the subsocial cockroach Cryptocercus, was also sequenced. A highly supported tree of termite relationships was produced by all analytical methods and data treatment approaches, however the relationship of the termites + Cryptocercus clade to other cockroach lineages was highly affected by the strong nucleotide compositional bias found in termites relative to other dictyopterans. The phylogeny supports previously proposed suprafamilial termite lineages, the Euisoptera and Neoisoptera, a later derived Kalotermitidae as sister group of the Neoisoptera and a monophyletic clade of dampwood (Stolotermitidae, Archotermopsidae) and harvester termites (Hodotermitidae). In contrast to previous termite phylogenetic studies, nodal supports were very high for family-level relationships within termites. Two rare genomic changes in the mt genome control region were found to be molecular synapomorphies for major clades. An elongated stem-loop structure defined the clade Polyphagidae + (Cryptocercus + termites), and a further series of compensatory base changes in this stem loop is synapomorphic for the Neoisoptera. The complicated repeat structures first identified in Reticulitermes, composed of short (A-type) and long (B-type repeats) defines the clade Heterotermitinae + Termitidae, while the secondary loss of A-type repeats is synapomorphic for the non-macrotermitine Termitidae.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In Australia, railway systems play a vital role in transporting the sugarcane crop from farms to mills. The sugarcane transport system is very complex and uses daily schedules, consisting of a set of locomotives runs, to satisfy the requirements of the mill and harvesters. The total cost of sugarcane transport operations is very high; over 35% of the total cost of sugarcane production in Australia is incurred in cane transport. Efficient schedules for sugarcane transport can reduce the cost and limit the negative effects that this system can have on the raw sugar production system. There are several benefits to formulating the train scheduling problem as a blocking parallel-machine job shop scheduling (BPMJSS) problem, namely to prevent two trains passing in one section at the same time; to keep the train activities (operations) in sequence during each run (trip) by applying precedence constraints; to pass the trains on one section in the correct order (priorities of passing trains) by applying disjunctive constraints; and, to ease passing trains by solving rail conflicts by applying blocking constraints and Parallel Machine Scheduling. Therefore, the sugarcane rail operations are formulated as BPMJSS problem. A mixed integer programming and constraint programming approaches are used to describe the BPMJSS problem. The model is solved by the integration of constraint programming, mixed integer programming and search techniques. The optimality performance is tested by Optimization Programming Language (OPL) and CPLEX software on small and large size instances based on specific criteria. A real life problem is used to verify and validate the approach. Constructive heuristics and new metaheuristics including simulated annealing and tabu search are proposed to solve this complex and NP-hard scheduling problem and produce a more efficient scheduling system. Innovative hybrid and hyper metaheuristic techniques are developed and coded using C# language to improve the solutions quality and CPU time. Hybrid techniques depend on integrating heuristic and metaheuristic techniques consecutively, while hyper techniques are the complete integration between different metaheuristic techniques, heuristic techniques, or both.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The most common software analysis tools available for measuring fluorescence images are for two-dimensional (2D) data that rely on manual settings for inclusion and exclusion of data points, and computer-aided pattern recognition to support the interpretation and findings of the analysis. It has become increasingly important to be able to measure fluorescence images constructed from three-dimensional (3D) datasets in order to be able to capture the complexity of cellular dynamics and understand the basis of cellular plasticity within biological systems. Sophisticated microscopy instruments have permitted the visualization of 3D fluorescence images through the acquisition of multispectral fluorescence images and powerful analytical software that reconstructs the images from confocal stacks that then provide a 3D representation of the collected 2D images. Advanced design-based stereology methods have progressed from the approximation and assumptions of the original model-based stereology(1) even in complex tissue sections(2). Despite these scientific advances in microscopy, a need remains for an automated analytic method that fully exploits the intrinsic 3D data to allow for the analysis and quantification of the complex changes in cell morphology, protein localization and receptor trafficking. Current techniques available to quantify fluorescence images include Meta-Morph (Molecular Devices, Sunnyvale, CA) and Image J (NIH) which provide manual analysis. Imaris (Andor Technology, Belfast, Northern Ireland) software provides the feature MeasurementPro, which allows the manual creation of measurement points that can be placed in a volume image or drawn on a series of 2D slices to create a 3D object. This method is useful for single-click point measurements to measure a line distance between two objects or to create a polygon that encloses a region of interest, but it is difficult to apply to complex cellular network structures. Filament Tracer (Andor) allows automatic detection of the 3D neuronal filament-like however, this module has been developed to measure defined structures such as neurons, which are comprised of dendrites, axons and spines (tree-like structure). This module has been ingeniously utilized to make morphological measurements to non-neuronal cells(3), however, the output data provide information of an extended cellular network by using a software that depends on a defined cell shape rather than being an amorphous-shaped cellular model. To overcome the issue of analyzing amorphous-shaped cells and making the software more suitable to a biological application, Imaris developed Imaris Cell. This was a scientific project with the Eidgenössische Technische Hochschule, which has been developed to calculate the relationship between cells and organelles. While the software enables the detection of biological constraints, by forcing one nucleus per cell and using cell membranes to segment cells, it cannot be utilized to analyze fluorescence data that are not continuous because ideally it builds cell surface without void spaces. To our knowledge, at present no user-modifiable automated approach that provides morphometric information from 3D fluorescence images has been developed that achieves cellular spatial information of an undefined shape (Figure 1). We have developed an analytical platform using the Imaris core software module and Imaris XT interfaced to MATLAB (Mat Works, Inc.). These tools allow the 3D measurement of cells without a pre-defined shape and with inconsistent fluorescence network components. Furthermore, this method will allow researchers who have extended expertise in biological systems, but not familiarity to computer applications, to perform quantification of morphological changes in cell dynamics.