484 resultados para Low impedance


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrostatic discharges have been identified as the most likely cause in a number of incidents of fire and explosion with unexplained ignitions. The lack of data and suitable models for this ignition mechanism creates a void in the analysis to quantify the importance of static electricity as a credible ignition mechanism. Quantifiable hazard analysis of the risk of ignition by static discharge cannot, therefore, be entirely carried out with our current understanding of this phenomenon. The study of electrostatics has been ongoing for a long time. However, it was not until the wide spread use of electronics that research was developed for the protection of electronics from electrostatic discharges. Current experimental models for electrostatic discharge developed for intrinsic safety with electronics are inadequate for ignition analysis and typically are not supported by theoretical analysis. A preliminary simulation and experiment with low voltage was designed to investigate the characteristics of energy dissipation and provided a basis for a high voltage investigation. It was seen that for a low voltage the discharge energy represents about 10% of the initial capacitive energy available and that the energy dissipation was within 10 ns of the initial discharge. The potential difference is greatest at the initial break down when the largest amount of the energy is dissipated. The discharge pathway is then established and minimal energy is dissipated as energy dissipation becomes greatly influenced by other components and stray resistance in the discharge circuit. From the initial low voltage simulation work, the importance of the energy dissipation and the characteristic of the discharge were determined. After the preliminary low voltage work was completed, a high voltage discharge experiment was designed and fabricated. Voltage and current measurement were recorded on the discharge circuit allowing the discharge characteristic to be recorded and energy dissipation in the discharge circuit calculated. Discharge energy calculations show consistency with the low voltage work relating to discharge energy with about 30-40% of the total initial capacitive energy being discharged in the resulting high voltage arc. After the system was characterised and operation validated, high voltage ignition energy measurements were conducted on a solution of n-Pentane evaporating in a 250 cm3 chamber. A series of ignition experiments were conducted to determine the minimum ignition energy of n-Pentane. The data from the ignition work was analysed with standard statistical regression methods for tests that return binary (yes/no) data and found to be in agreement with recent publications. The research demonstrates that energy dissipation is heavily dependent on the circuit configuration and most especially by the discharge circuit's capacitance and resistance. The analysis established a discharge profile for the discharges studied and validates the application of this methodology for further research into different materials and atmospheres; by systematically looking at discharge profiles of test materials with various parameters (e.g., capacitance, inductance, and resistance). Systematic experiments looking at the discharge characteristics of the spark will also help understand the way energy is dissipated in an electrostatic discharge enabling a better understanding of the ignition characteristics of materials in terms of energy and the dissipation of that energy in an electrostatic discharge.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

At our regional University low socioeconomic status (SES) campus, enrolled nurses can enter into the second year of a Bachelor of Nursing. These students, hence, have their first year experience while entering directly into the degree’s second year. A third of these students withdrew from our Bioscience units, and left the University. In an attempt to improve student retention and success, we introduced a strategy involving (i) review lectures in each of the Bioscience disciplines, and subsequently, (ii) “Getting started”, a formative website activity of basic Bioscience concepts, (iii) an ‘O’-week workshop addressing study skills and online resources, and (iv) online tutor support. In addition to being well received, the introduction of the review lectures and full intervention was associated with a significant reduction in student attrition. This successful approach could be used in other low SES areas with accelerated programs for Nursing and may have application beyond this discipline.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The University of Queensland UltraCommuter concept is an ultra- light, low-drag, hybrid-electric sports coupe designed to minimize energy consumption and environmental impact while enhancing the performance, styling, features and convenience that motorists enjoy. This paper presents a detailed simulation study of the vehicle's performance and fuel economy using ADVISOR, including a detailed description of the component models and parameters assumed. Results from the study include predictions of a 0-100 kph acceleration time of ≺9s, and top speed of 170 kph, an electrical energy consumption of ≺67 Wh/km in ZEV mode and a petrol-equivalent fuel consumption of ≺2.5 L/100 km in charge-sustaining HEV mode. Overall, the results of the ADVISOR modelling confirm the UltraCommuter's potential to achieve high performance with high efficiency, and the authors look forward to a confirmation of these estimates following completion of the vehicle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A design for a cascaded multilevel DC-DC converter is proposed. The applications of a multilevel converter and the design issues involved in changing from a single converter to multiple converters are discussed. Implementation of the multilevel system using multiple Cuk converters is suggested and explanations of design decisions are given. The merits of the proposed design are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The formalin test is increasingly applied as a model of inflammatory pain using high formalin concentrations (5–15%). However, little is known about the effects of low formalin concentrations on related behavioural responses. To examine this, rat pups were subjected to various concentrations of formalin at four developmental stages: 7, 13, 22, and 82 days of age. At postnatal day (PND) 7, sex differences in flinching but not licking responses were observed with 0.5% formalin evoking higher flinching in males than in females. A dose response was evident in that 0.5% formalin also produced higher licking responses compared to 0.3% or 0.4% formalin. At PND 13, a concentration of 0.8% formalin evoked a biphasic response. At PND 22, a concentration of 1.1% evoked higher flinching and licking responses during the late phase (10–30 min) in both males and females. During the early phase (0–5 min), 1.1% evoked higher licking responses compared to 0.9% or 1% formalin. 1.1% formalin produced a biphasic response that was not evident with 0.9 or 1%. At PND 82, rats displayed a biphasic pattern in response to three formalin concentrations (1.25%, 1.75% and 2.25%) with the presence of an interphase for both 1.75% and 2.25% but not for 1.25%. These data suggest that low formalin concentrations induce fine-tuned responses that are not apparent with the high formalin concentration commonly used in the formalin test. These data also show that the developing nociceptive system is very sensitive to subtle changes in formalin concentrations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose Commencing selected workouts with low muscle glycogen availability augments several markers of training adaptation compared with undertaking the same sessions with normal glycogen content. However, low glycogen availability reduces the capacity to perform high-intensity (>85% of peak aerobic power (V·O2peak)) endurance exercise. We determined whether a low dose of caffeine could partially rescue the reduction in maximal self-selected power output observed when individuals commenced high-intensity interval training with low (LOW) compared with normal (NORM) glycogen availability. Methods Twelve endurance-trained cyclists/triathletes performed four experimental trials using a double-blind Latin square design. Muscle glycogen content was manipulated via exercise–diet interventions so that two experimental trials were commenced with LOW and two with NORM muscle glycogen availability. Sixty minutes before an experimental trial, subjects ingested a capsule containing anhydrous caffeine (CAFF, 3 mg-1·kg-1 body mass) or placebo (PLBO). Instantaneous power output was measured throughout high-intensity interval training (8 × 5-min bouts at maximum self-selected intensity with 1-min recovery). Results There were significant main effects for both preexercise glycogen content and caffeine ingestion on power output. LOW reduced power output by approximately 8% compared with NORM (P < 0.01), whereas caffeine increased power output by 2.8% and 3.5% for NORM and LOW, respectively, (P < 0.01). Conclusion We conclude that caffeine enhanced power output independently of muscle glycogen concentration but could not fully restore power output to levels commensurate with that when subjects commenced exercise with normal glycogen availability. However, the reported increase in power output does provide a likely performance benefit and may provide a means to further enhance the already augmented training response observed when selected sessions are commenced with reduced muscle glycogen availability. It has long been known that endurance training induces a multitude of metabolic and morphological adaptations that improve the resistance of the trained musculature to fatigue and enhance endurance capacity and/or exercise performance (13). Accumulating evidence now suggests that many of these adaptations can be modified by nutrient availability (9–11,21). Growing evidence suggests that training with reduced muscle glycogen using a “train twice every second day” compared with a more traditional “train once daily” approach can enhance the acute training response (29) and markers representative of endurance training adaptation after short-term (3–10 wk) training interventions (8,16,30). Of note is that the superior training adaptation in these previous studies was attained despite a reduction in maximal self-selected power output (16,30). The most obvious factor underlying the reduced intensity during a second training bout is the reduction in muscle glycogen availability. However, there is also the possibility that other metabolic and/or neural factors may be responsible for the power drop-off observed when two exercise bouts are performed in close proximity. Regardless of the precise mechanism(s), there remains the intriguing possibility that the magnitude of training adaptation previously reported in the face of a reduced training intensity (Hulston et al. (16) and Yeo et al.) might be further augmented, and/or other aspects of the training stimulus better preserved, if power output was not compromised. Caffeine ingestion is a possible strategy that might “rescue” the aforementioned reduction in power output that occurs when individuals commence high-intensity interval training (HIT) with low compared with normal glycogen availability. Recent evidence suggests that, at least in endurance-based events, the maximal benefits of caffeine are seen at small to moderate (2–3 mg·kg-1 body mass (BM)) doses (for reviews, see Refs. (3,24)). Accordingly, in this study, we aimed to determine the effect of a low dose of caffeine (3 mg·kg-1 BM) on maximal self-selected power output during HIT commenced with either normal (NORM) or low (LOW) muscle glycogen availability. We hypothesized that even under conditions of low glycogen availability, caffeine would increase maximal self-selected power output and thereby partially rescue the reduction in training intensity observed when individuals commence HIT with low glycogen availability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction. The purpose of this chapter is to address the question raised in the chapter title. Specifically, how can models of motor control help us understand low back pain (LBP)? There are several classes of models that have been used in the past for studying spinal loading, stability, and risk of injury (see Reeves and Cholewicki (2003) for a review of past modeling approaches), but for the purpose of this chapter we will focus primarily on models used to assess motor control and its effect on spine behavior. This chapter consists of 4 sections. The first section discusses why a shift in modeling approaches is needed to study motor control issues. We will argue that the current approach for studying the spine system is limited and not well-suited for assessing motor control issues related to spine function and dysfunction. The second section will explore how models can be used to gain insight into how the central nervous system (CNS) controls the spine. This segues segue nicely into the next section that will address how models of motor control can be used in the diagnosis and treatment of LBP. Finally, the last section will deal with the issue of model verification and validity. This issue is important since modelling accuracy is critical for obtaining useful insight into the behavior of the system being studied. This chapter is not intended to be a critical review of the literature, but instead intended to capture some of the discussion raised during the 2009 Spinal Control Symposium, with some elaboration on certain issues. Readers interested in more details are referred to the cited publications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We determined the effect of muscle glycogen concentration and postexercise nutrition on anabolic signaling and rates of myofibrillar protein synthesis after resistance exercise (REX). Sixteen young, healthy men matched for age, body mass, peak oxygen uptake (VO2peak) and strength (one repetition maximum; 1RM) were randomly assigned to either a nutrient or placebo group. After 48 h diet and exercise control, subjects undertook a glycogen-depletion protocol consisting of one-leg cycling to fatigue (LOW), whereas the other leg rested (NORM). The next morning following an overnight fast, a primed, constant infusion of L-[ring-13C6] phenylalanine was commenced and subjects completed 8 sets of 5 unilateral leg press repetitions at 80% 1RM. Immediately after REX and 2 h later, subjects consumed a 500 ml bolus of a protein/CHO (20 g whey + 40 g maltodextrin) or placebo beverage. Muscle biopsies from the vastus lateralis of both legs were taken at rest and 1 and 4 h after REX. Muscle glycogen concentration was higher in the NORM than LOW at all time points in both nutrient and placebo groups (P < 0.05). Postexercise Akt-p70S6K-rpS6 phosphorylation increased in both groups with no differences between legs (P < 0.05). mTORSer2448 phosphorylation in placebo increased 1 h after exercise in NORM (P < 0.05), whereas mTOR increased ?4-fold in LOW (P < 0.01) and ?11 fold in NORM with nutrient (P < 0.01; different between legs P < 0.05). Post-exercise rates of MPS were not different between NORM and LOW in nutrient (0.070 ± 0.022 vs. 0.068 ± 0.018 %/h) or placebo (0.045 ± 0.021 vs. 0.049 ± 0.017 %/h). We conclude that commencing high-intensity REX with low muscle glycogen availability does not compromise the anabolic signal and subsequent rates of MPS, at least during the early (4 h) postexercise recovery period.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Anxiety traits can be stable and permanent characteristics of an individual across time that is less susceptible of influences by a particular situation. One way to study trait anxiety in an experimental context is through the use of rat lines, selected according to contrasting phenotypes of fear and anxiety. It is not clear whether the behavioral differences between two contrasting rat lines in one given anxiety test are also present in others paradigms of state anxiety. Here, we examine the extent to which multiple anxiety traits generalize across selected animal lines originally selected for a single anxiety trait. We review the behavioral results available in the literature of eight rat genetic models of trait anxiety - namely Maudsley Reactive and Non-reactive rats, Floripa H and L rats, Tsukuba High and Low Emotional rats, High and Low Anxiety-related rats, High and Low Ultrasonic Vocalization rats, Roman High and Low Avoidance rats, Syracuse High and Low Avoidance rats, and Carioca High and Low Conditioned Freezing rats - across 11 behavioral paradigms of innate anxiety or aversive learning frequently used in the experimental setting. We observed both convergence and divergence of behavioral responses in these selected lines across the 11 paradigms. We find that predisposition for specific anxiety traits will usually be generalized to other anxiety provoking stimuli. However this generalization is not observed across all genetic models indicating some unique trait and state interactions. Genetic models of enhanced-anxiety related responses are beginning to help define how anxiety can manifest differently depending on the underlying traits and the current environmentally induced state.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Individual variability in the acquisition, consolidation and extinction of conditioned fear potentially contributes to the development of fear pathology including posttraumatic stress disorder (PTSD). Pavlovian fear conditioning is a key tool for the study of fundamental aspects of fear learning. Here, we used a selected mouse line of High and Low Pavlovian conditioned fear created from an advanced intercrossed line (AIL) in order to begin to identify the cellular basis of phenotypic divergence in Pavlovian fear conditioning. We investigated whether phosphorylated MAPK (p44/42 ERK/MAPK), a protein kinase required in the amygdala for the acquisition and consolidation of Pavlovian fear memory, is differentially expressed following Pavlovian fear learning in the High and Low fear lines. We found that following Pavlovian auditory fear conditioning, High and Low line mice differ in the number of pMAPK-expressing neurons in the dorsal sub nucleus of the lateral amygdala (LAd). In contrast, this difference was not detected in the ventral medial (LAvm) or ventral lateral (LAvl) amygdala sub nuclei or in control animals. We propose that this apparent increase in plasticity at a known locus of fear memory acquisition and consolidation relates to intrinsic differences between the two fear phenotypes. These data provide important insights into the micronetwork mechanisms encoding phenotypic differences in fear. Understanding the circuit level cellular and molecular mechanisms that underlie individual variability in fear learning is critical for the development of effective treatment of fear-related illnesses such as PTSD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A growing body of evidence suggests that mitochondrial function may be important in brain development and psychiatric disorders. However, detailed expression profiles of those genes in human brain development and fear-related behavior remain unclear. Using microarray data available from the public domain and the Gene Ontology analysis, we identified the genes and the functional categories associated with chronological age in the prefrontal cortex (PFC) and the caudate nucleus (CN) of psychiatrically normal humans ranging in age from birth to 50 years. Among those, we found that a substantial number of genes in the PFC (115) and the CN (117) are associated with the GO term: mitochondrion (FDR qv <0.05). A greater number of the genes in the PFC (91%) than the genes in the CN (62%) showed a linear increase in expression during postnatal development. Using quantitative PCR, we validated the developmental expression pattern of four genes including monoamine oxidase B (MAOB), NADH dehydrogenase flavoprotein (NDUFV1), mitochondrial uncoupling protein 5 (SLC25A14) and tubulin beta-3 chain (TUBB3). In mice, overall developmental expression pattern of MAOB, SLC25A14 and TUBB3 in the PFC were comparable to the pattern observed in humans (p<0.05). However, mice selectively bred for high fear did not exhibit normal developmental changes of MAOB and TUBB3. These findings suggest that the genes associated with mitochondrial function in the PFC play a significant role in brain development and fear-related behavior.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although the endocannabinoid system (ECS) has been implicated in brain development and various psychiatric disorders, precise mechanisms of the ECS on mood and anxiety disorders remain unclear. Here, we have investigated developmental and disease-related expression pattern of the cannabinoid receptor 1 (CB1) and the cannabinoid receptor 2 (CB2) genes in the dorsolateral prefrontal cortex (PFC) of humans. Using mice selectively bred for high and low fear, we further investigated potential association between fear memory and the cannabinoid receptor expression in the brain. The CB1, not the CB2, mRNA levels in the PFC gradually decrease during postnatal development ranging in age from birth to 50 years (r 2 > 0.6 & adj. p < 0.05). The CB1 levels in the PFC of major depression patients were higher when compared to the age-matched controls (adj. p < 0.05). In mice, the CB1, not the CB2, levels in the PFC were positively correlated with freezing behavior in classical fear conditioning (p < 0.05). These results suggest that the CB1 in the PFC may play a significant role in regulating mood and anxiety symptoms. Our study demonstrates the advantage of utilizing data from postmortem brain tissue and a mouse model of fear to enhance our understanding of the role of the cannabinoid receptors in mood and anxiety disorders

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The findings of the recent independent review of the UK Liverpool Care Pathway (LCP)1, following substantial concerns raised by members of the public and health professionals found that the implementation of the LCP is often associated with poor care1. The Neuberger Report highlighted the complexity of various ethical, safety, clinical practice and negligence issues associated with pathway usage and how, despite technological advances, diagnosing dying continues to be challenging. The UK Government’s decision to phase out the LCP as policy following these findings, has generated considerable debate both within and beyond the UK. However, another key issue raised by the Neuberger’s report is the issue of the palliative care community’s perceived willingness to readily adopt new clinical practices in the absence of evidence. It is this translational issue that this editorial explores.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-wind events such as storms and hurricanes cause severe damage to low-rise building (housing, schools, and industrial, commercial, and farm buildings). Roof claddings often suffer the worst, which then leads to accelerated damage to the whole building. Australia leads the way in solving this international problem through extensive research and development work, and has adequate documents in place. This paper first illustrates briefly the nature of high-wind events and then the commonly observed damage to buildings. Australian research work and design practice are then described, based on which suitable design recommendations for wind-resistant buildings are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Cancer-related malnutrition is associated with increased morbidity, poorer tolerance of treatment, decreased quality of life, increased hospital admissions, and increased health care costs (Isenring et al., 2013). This study’s aim was to determine whether a novel, automated screening system was a useful tool for nutrition screening when compared against a full nutrition assessment using the Patient-Generated Subjective Global Assessment (PG-SGA) tool. Methods A single site, observational, cross-sectional study was conducted in an outpatient oncology day care unit within a Queensland tertiary facility, with three hundred outpatients (51.7% male, mean age 58.6 ± 13.3 years). Eligibility criteria: ≥18 years, receiving anticancer treatment, able to provide written consent. Patients completed the Malnutrition Screening Tool (MST). Nutritional status was assessed using the PG-SGA. Data for the automated screening system was extracted from the pharmacy software program Charm. This included body mass index (BMI) and weight records dating back up to six months. Results The prevalence of malnutrition was 17%. Any weight loss over three to six weeks prior to the most recent weight record as identified by the automated screening system relative to malnutrition resulted in 56.52% sensitivity, 35.43% specificity, 13.68% positive predictive value, 81.82% negative predictive value. MST score 2 or greater was a stronger predictor of nutritional risk relative to PG-SGA classified malnutrition (70.59% sensitivity, 69.48% specificity, 32.14% positive predictive value, 92.02% negative predictive value). Conclusions Both the automated screening system and the MST fell short of the accepted professional standard for sensitivity (80%) or specificity (60%) when compared to the PG-SGA. However, although the MST remains a better predictor of malnutrition in this setting, uptake of this tool in the Oncology Day Care Unit remains challenging.