395 resultados para Intrusion Detection, Computer Security, Misuse


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Techniques to improve the automated analysis of natural and spontaneous facial expressions have been developed. The outcome of the research has applications in several fields including national security (eg: expression invariant face recognition); education (eg: affect aware interfaces); mental and physical health (eg: depression and pain recognition).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Whether by using electronic banking, by using credit cards, or by synchronising a mobile telephone via Bluetooth to an in-car system, humans are a critical part in many cryptographic protocols daily. We reduced the gap that exists between the theory and the reality of the security of these cryptographic protocols involving humans, by creating tools and techniques for proofs and implementations of human-followable security. After three human research studies, we present a model for capturing human recognition; we provide a tool for generating values called Computer-HUman Recognisable Nonces (CHURNs); and we provide a model for capturing human perceptible freshness.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper elaborates the approach used by the Applied Data Mining Research Group (ADMRG) for the Social Event Detection (SED) Tasks of the 2013 MediaEval Benchmark. We extended the constrained clustering algorithm to apply to the first semi-supervised clustering task, and we compared several classifiers with Latent Dirichlet Allocation as feature selector in the second event classification task. The proposed approach focuses on scalability and efficient memory allocation when applied to a high dimensional data with large clusters. Results of the first task show the effectiveness of the proposed method. Results from task 2 indicate that attention on the imbalance categories distributions is needed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Even though web security protocols are designed to make computer communication secure, it is widely known that there is potential for security breakdowns at the human-machine interface. This paper examines findings from a qualitative study investigating the identification of security decisions used on the web. The study was designed to uncover how security is perceived in an individual user's context. Study participants were tertiary qualified individuals, with a focus on HCI designers, security professionals and the general population. The study identifies that security frameworks for the web are inadequate from an interaction perspective, with even tertiary qualified users having a poor or partial understanding of security, of which they themselves are acutely aware. The result is that individuals feel they must protect themselves on the web. The findings contribute a significant mapping of the ways in which individuals reason and act to protect themselves on the web. We use these findings to highlight the need to design for trust at three levels, and the need to ensure that HCI design does not impact on the users' main identified protection mechanism: separation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A fundamental part of many authentication protocols which authenticate a party to a human involves the human recognizing or otherwise processing a message received from the party. Examples include typical implementations of Verified by Visa in which a message, previously stored by the human at a bank, is sent by the bank to the human to authenticate the bank to the human; or the expectation that humans will recognize or verify an extended validation certificate in a HTTPS context. This paper presents general definitions and building blocks for the modelling and analysis of human recognition in authentication protocols, allowing the creation of proofs for protocols which include humans. We cover both generalized trawling and human-specific targeted attacks. As examples of the range of uses of our construction, we use the model presented in this paper to prove the security of a mutual authentication login protocol and a human-assisted device pairing protocol.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Non-linear feedback shift register (NLFSR) ciphers are cryptographic tools of choice of the industry especially for mobile communication. Their attractive feature is a high efficiency when implemented in hardware or software. However, the main problem of NLFSR ciphers is that their security is still not well investigated. The paper makes a progress in the study of the security of NLFSR ciphers. In particular, we show a distinguishing attack on linearly filtered NLFSR (or LF-NLFSR) ciphers. We extend the attack to a linear combination of LF-NLFSRs. We investigate the security of a modified version of the Grain stream cipher and show its vulnerability to both key recovery and distinguishing attacks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents an investigation into event detection in crowded scenes, where the event of interest co-occurs with other activities and only binary labels at the clip level are available. The proposed approach incorporates a fast feature descriptor from the MPEG domain, and a novel multiple instance learning (MIL) algorithm using sparse approximation and random sensing. MPEG motion vectors are used to build particle trajectories that represent the motion of objects in uniform video clips, and the MPEG DCT coefficients are used to compute a foreground map to remove background particles. Trajectories are transformed into the Fourier domain, and the Fourier representations are quantized into visual words using the K-Means algorithm. The proposed MIL algorithm models the scene as a linear combination of independent events, where each event is a distribution of visual words. Experimental results show that the proposed approaches achieve promising results for event detection compared to the state-of-the-art.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Novel computer vision techniques have been developed for automatic monitoring of crowed environments such as airports, railway stations and shopping malls. Using video feeds from multiple cameras, the techniques enable crowd counting, crowd flow monitoring, queue monitoring and abnormal event detection. The outcome of the research is useful for surveillance applications and for obtaining operational metrics to improve business efficiency.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ability to automate forced landings in an emergency such as engine failure is an essential ability to improve the safety of Unmanned Aerial Vehicles operating in General Aviation airspace. By using active vision to detect safe landing zones below the aircraft, the reliability and safety of such systems is vastly improved by gathering up-to-the-minute information about the ground environment. This paper presents the Site Detection System, a methodology utilising a downward facing camera to analyse the ground environment in both 2D and 3D, detect safe landing sites and characterise them according to size, shape, slope and nearby obstacles. A methodology is presented showing the fusion of landing site detection from 2D imagery with a coarse Digital Elevation Map and dense 3D reconstructions using INS-aided Structure-from-Motion to improve accuracy. Results are presented from an experimental flight showing the precision/recall of landing sites in comparison to a hand-classified ground truth, and improved performance with the integration of 3D analysis from visual Structure-from-Motion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The huge amount of CCTV footage available makes it very burdensome to process these videos manually through human operators. This has made automated processing of video footage through computer vision technologies necessary. During the past several years, there has been a large effort to detect abnormal activities through computer vision techniques. Typically, the problem is formulated as a novelty detection task where the system is trained on normal data and is required to detect events which do not fit the learned ‘normal’ model. There is no precise and exact definition for an abnormal activity; it is dependent on the context of the scene. Hence there is a requirement for different feature sets to detect different kinds of abnormal activities. In this work we evaluate the performance of different state of the art features to detect the presence of the abnormal objects in the scene. These include optical flow vectors to detect motion related anomalies, textures of optical flow and image textures to detect the presence of abnormal objects. These extracted features in different combinations are modeled using different state of the art models such as Gaussian mixture model(GMM) and Semi- 2D Hidden Markov model(HMM) to analyse the performances. Further we apply perspective normalization to the extracted features to compensate for perspective distortion due to the distance between the camera and objects of consideration. The proposed approach is evaluated using the publicly available UCSD datasets and we demonstrate improved performance compared to other state of the art methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Machine vision is emerging as a viable sensing approach for mid-air collision avoidance (particularly for small to medium aircraft such as unmanned aerial vehicles). In this paper, using relative entropy rate concepts, we propose and investigate a new change detection approach that uses hidden Markov model filters to sequentially detect aircraft manoeuvres from morphologically processed image sequences. Experiments using simulated and airborne image sequences illustrate the performance of our proposed algorithm in comparison to other sequential change detection approaches applied to this application.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For decades Supervisory Control and Data Acquisition (SCADA) and Industrial Control Systems (ICS) have used computers to monitor and control physical processes in many critical industries, including electricity generation, gas pipelines, water distribution, waste treatment, communications and transportation. Increasingly these systems are interconnected with corporate networks via the Internet, making them vulnerable and exposed to the same risks as those experiencing cyber-attacks on a conventional network. Very often SCADA networks services are viewed as a specialty subject, more relevant to engineers than standard IT personnel. Educators from two Australian universities have recognised these cultural issues and highlighted the gap between specialists with SCADA systems engineering skills and the specialists in network security with IT background. This paper describes a learning approach designed to help students to bridge this gap, gain theoretical knowledge of SCADA systems' vulnerabilities to cyber-attacks via experiential learning and acquire practical skills through actively participating in hands-on exercises.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we provide an overview of the Social Event Detection (SED) task that is part of the MediaEval Bench mark for Multimedia Evaluation 2013. This task requires participants to discover social events and organize the re- lated media items in event-specific clusters within a collection of Web multimedia. Social events are events that are planned by people, attended by people and for which the social multimedia are also captured by people. We describe the challenges, datasets, and the evaluation methodology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A security system based on the recognition of the iris of human eyes using the wavelet transform is presented. The zero-crossings of the wavelet transform are used to extract the unique features obtained from the grey-level profiles of the iris. The recognition process is performed in two stages. The first stage consists of building a one-dimensional representation of the grey-level profiles of the iris, followed by obtaining the wavelet transform zerocrossings of the resulting representation. The second stage is the matching procedure for iris recognition. The proposed approach uses only a few selected intermediate resolution levels for matching, thus making it computationally efficient as well as less sensitive to noise and quantisation errors. A normalisation process is implemented to compensate for size variations due to the possible changes in the camera-to-face distance. The technique has been tested on real images in both noise-free and noisy conditions. The technique is being investigated for real-time implementation, as a stand-alone system, for access control to high-security areas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent modelling of socio-economic costs by the Australian railway industry in 2010 has estimated the cost of level crossing accidents to exceed AU$116 million annually. To better understand causal factors that contribute to these accidents, the Cooperative Research Centre for Rail Innovation is running a project entitled Baseline Level Crossing Video. The project aims to improve the recording of level crossing safety data by developing an intelligent system capable of detecting near-miss incidents and capturing quantitative data around these incidents. To detect near-miss events at railway level crossings a video analytics module is being developed to analyse video footage obtained from forward-facing cameras installed on trains. This paper presents a vision base approach for the detection of these near-miss events. The video analytics module is comprised of object detectors and a rail detection algorithm, allowing the distance between a detected object and the rail to be determined. An existing publicly available Histograms of Oriented Gradients (HOG) based object detector algorithm is used to detect various types of vehicles in each video frame. As vehicles are usually seen from a sideway view from the cabin’s perspective, the results of the vehicle detector are verified using an algorithm that can detect the wheels of each detected vehicle. Rail detection is facilitated using a projective transformation of the video, such that the forward-facing view becomes a bird’s eye view. Line Segment Detector is employed as the feature extractor and a sliding window approach is developed to track a pair of rails. Localisation of the vehicles is done by projecting the results of the vehicle and rail detectors on the ground plane allowing the distance between the vehicle and rail to be calculated. The resultant vehicle positions and distance are logged to a database for further analysis. We present preliminary results regarding the performance of a prototype video analytics module on a data set of videos containing more than 30 different railway level crossings. The video data is captured from a journey of a train that has passed through these level crossings.