396 resultados para Intelligence and employees
Resumo:
In this paper, we develop a conceptual model to explore the perceived complementary congruence between complex project leaders and the demands of the complex project environment to understand how leaders’ affective and behavioural performance at work might be impacted by this fit. We propose that complex project leaders high in emotional intelligence and cognitive flexibility should report a higher level of fit between themselves and the complex project environment. This abilities-demands measure of fit should then relate to affective and behavioural performance outcomes, such that leaders who perceive a higher level of fit should establish and maintain more effective, higher quality project stakeholder relationships than leaders who perceive a lower level of fit.
Resumo:
This paper presents a novel technique for performing SLAM along a continuous trajectory of appearance. Derived from components of FastSLAM and FAB-MAP, the new system dubbed Continuous Appearance-based Trajectory SLAM (CAT-SLAM) augments appearancebased place recognition with particle-filter based ‘pose filtering’ within a probabilistic framework, without calculating global feature geometry or performing 3D map construction. For loop closure detection CAT-SLAM updates in constant time regardless of map size. We evaluate the effectiveness of CAT-SLAM on a 16km outdoor road network and determine its loop closure performance relative to FAB-MAP. CAT-SLAM recognizes 3 times the number of loop closures for the case where no false positives occur, demonstrating its potential use for robust loop closure detection in large environments.
Resumo:
In this paper, we present a new algorithm for boosting visual template recall performance through a process of visual expectation. Visual expectation dynamically modifies the recognition thresholds of learnt visual templates based on recently matched templates, improving the recall of sequences of familiar places while keeping precision high, without any feedback from a mapping backend. We demonstrate the performance benefits of visual expectation using two 17 kilometer datasets gathered in an outdoor environment at two times separated by three weeks. The visual expectation algorithm provides up to a 100% improvement in recall. We also combine the visual expectation algorithm with the RatSLAM SLAM system and show how the algorithm enables successful mapping
Resumo:
Recent algorithms for monocular motion capture (MoCap) estimate weak-perspective camera matrices between images using a small subset of approximately-rigid points on the human body (i.e. the torso and hip). A problem with this approach, however, is that these points are often close to coplanar, causing canonical linear factorisation algorithms for rigid structure from motion (SFM) to become extremely sensitive to noise. In this paper, we propose an alternative solution to weak-perspective SFM based on a convex relaxation of graph rigidity. We demonstrate the success of our algorithm on both synthetic and real world data, allowing for much improved solutions to marker less MoCap problems on human bodies. Finally, we propose an approach to solve the two-fold ambiguity over bone direction using a k-nearest neighbour kernel density estimator.
Resumo:
We propose an approach to employ eigen light-fields for face recognition across pose on video. Faces of a subject are collected from video frames and combined based on the pose to obtain a set of probe light-fields. These probe data are then projected to the principal subspace of the eigen light-fields within which the classification takes place. We modify the original light-field projection and found that it is more robust in the proposed system. Evaluation on VidTIMIT dataset has demonstrated that the eigen light-fields method is able to take advantage of multiple observations contained in the video.
Resumo:
This paper presents a method for automatic terrain classification, using a cheap monocular camera in conjunction with a robot’s stall sensor. A first step is to have the robot generate a training set of labelled images. Several techniques are then evaluated for preprocessing the images, reducing their dimensionality, and building a classifier. Finally, the classifier is implemented and used online by an indoor robot. Results are presented, demonstrating an increased level of autonomy.
Resumo:
This paper presents an approach to building an observation likelihood function from a set of sparse, noisy training observations taken from known locations by a sensor with no obvious geometric model. The basic approach is to fit an interpolant to the training data, representing the expected observation, and to assume additive sensor noise. This paper takes a Bayesian view of the problem, maintaining a posterior over interpolants rather than simply the maximum-likelihood interpolant, giving a measure of uncertainty in the map at any point. This is done using a Gaussian process framework. To validate the approach experimentally, a model of an environment is built using observations from an omni-directional camera. After a model has been built from the training data, a particle filter is used to localise while traversing this environment
Resumo:
This paper presents a general, global approach to the problem of robot exploration, utilizing a topological data structure to guide an underlying Simultaneous Localization and Mapping (SLAM) process. A Gap Navigation Tree (GNT) is used to motivate global target selection and occluded regions of the environment (called “gaps”) are tracked probabilistically. The process of map construction and the motion of the vehicle alters both the shape and location of these regions. The use of online mapping is shown to reduce the difficulties in implementing the GNT.
Resumo:
The Link the Wiki track at INEX 2008 offered two tasks, file-to-file link discovery and anchor-to-BEP link discovery. In the former 6600 topics were used and in the latter 50 were used. Manual assessment of the anchor-to-BEP runs was performed using a tool developed for the purpose. Runs were evaluated using standard precision & recall measures such as MAP and precision / recall graphs. 10 groups participated and the approaches they took are discussed. Final evaluation results for all runs are presented.
Resumo:
This paper is about planning paths from overhead imagery, the novelty of which is taking explicit account of uncertainty in terrain classification and spatial variation in terrain cost. The image is first classified using a multi-class Gaussian Process Classifier which provides probabilities of class membership at each location in the image. The probability of class membership at a particular grid location is then combined with a terrain cost evaluated at that location using a spatial Gaussian process. The resulting cost function is, in turn, passed to a planner. This allows both the uncertainty in terrain classification and spatial variations in terrain costs to be incorporated into the planned path. Because the cost of traversing a grid cell is now a probability density rather than a single scalar value, we can produce not only the most-likely shortest path between points on the map, but also sample from the cost map to produce a distribution of paths between the points. Results are shown in the form of planned paths over aerial maps, these paths are shown to vary in response to local variations in terrain cost.
Resumo:
A rule-based approach for classifying previously identified medical concepts in the clinical free text into an assertion category is presented. There are six different categories of assertions for the task: Present, Absent, Possible, Conditional, Hypothetical and Not associated with the patient. The assertion classification algorithms were largely based on extending the popular NegEx and Context algorithms. In addition, a health based clinical terminology called SNOMED CT and other publicly available dictionaries were used to classify assertions, which did not fit the NegEx/Context model. The data for this task includes discharge summaries from Partners HealthCare and from Beth Israel Deaconess Medical Centre, as well as discharge summaries and progress notes from University of Pittsburgh Medical Centre. The set consists of 349 discharge reports, each with pairs of ground truth concept and assertion files for system development, and 477 reports for evaluation. The system’s performance on the evaluation data set was 0.83, 0.83 and 0.83 for recall, precision and F1-measure, respectively. Although the rule-based system shows promise, further improvements can be made by incorporating machine learning approaches.
Resumo:
A service-oriented system is composed of independent software units, namely services, that interact with one another exclusively through message exchanges. The proper functioning of such system depends on whether or not each individual service behaves as the other services expect it to behave. Since services may be developed and operated independently, it is unrealistic to assume that this is always the case. This article addresses the problem of checking and quantifying how much the actual behavior of a service, as recorded in message logs, conforms to the expected behavior as specified in a process model.We consider the case where the expected behavior is defined using the BPEL industry standard (Business Process Execution Language for Web Services). BPEL process definitions are translated into Petri nets and Petri net-based conformance checking techniques are applied to derive two complementary indicators of conformance: fitness and appropriateness. The approach has been implemented in a toolset for business process analysis and mining, namely ProM, and has been tested in an environment comprising multiple Oracle BPEL servers.
Resumo:
This project investigates machine listening and improvisation in interactive music systems with the goal of improvising musically appropriate accompaniment to an audio stream in real-time. The input audio may be from a live musical ensemble, or playback of a recording for use by a DJ. I present a collection of robust techniques for machine listening in the context of Western popular dance music genres, and strategies of improvisation to allow for intuitive and musically salient interaction in live performance. The findings are embodied in a computational agent – the Jambot – capable of real-time musical improvisation in an ensemble setting. Conceptually the agent’s functionality is split into three domains: reception, analysis and generation. The project has resulted in novel techniques for addressing a range of issues in each of these domains. In the reception domain I present a novel suite of onset detection algorithms for real-time detection and classification of percussive onsets. This suite achieves reasonable discrimination between the kick, snare and hi-hat attacks of a standard drum-kit, with sufficiently low-latency to allow perceptually simultaneous triggering of accompaniment notes. The onset detection algorithms are designed to operate in the context of complex polyphonic audio. In the analysis domain I present novel beat-tracking and metre-induction algorithms that operate in real-time and are responsive to change in a live setting. I also present a novel analytic model of rhythm, based on musically salient features. This model informs the generation process, affording intuitive parametric control and allowing for the creation of a broad range of interesting rhythms. In the generation domain I present a novel improvisatory architecture drawing on theories of music perception, which provides a mechanism for the real-time generation of complementary accompaniment in an ensemble setting. All of these innovations have been combined into a computational agent – the Jambot, which is capable of producing improvised percussive musical accompaniment to an audio stream in real-time. I situate the architectural philosophy of the Jambot within contemporary debate regarding the nature of cognition and artificial intelligence, and argue for an approach to algorithmic improvisation that privileges the minimisation of cognitive dissonance in human-computer interaction. This thesis contains extensive written discussions of the Jambot and its component algorithms, along with some comparative analyses of aspects of its operation and aesthetic evaluations of its output. The accompanying CD contains the Jambot software, along with video documentation of experiments and performances conducted during the project.
Resumo:
Large margin learning approaches, such as support vector machines (SVM), have been successfully applied to numerous classification tasks, especially for automatic facial expression recognition. The risk of such approaches however, is their sensitivity to large margin losses due to the influence from noisy training examples and outliers which is a common problem in the area of affective computing (i.e., manual coding at the frame level is tedious so coarse labels are normally assigned). In this paper, we leverage the relaxation of the parallel-hyperplanes constraint and propose the use of modified correlation filters (MCF). The MCF is similar in spirit to SVMs and correlation filters, but with the key difference of optimizing only a single hyperplane. We demonstrate the superiority of MCF over current techniques on a battery of experiments.
Resumo:
In this paper we describe the dynamic simulation of an 18 degrees of freedom hexapod robot with the objective of developing control algorithms for smooth, efficient and robust walking in irregular terrain. This is to be achieved by using force sensors in addition to the conventional joint angle sensors as proprioceptors. The reaction forces on the feet of the robot provide the necessary information on the robots interaction with the terrain. As a first step we validate the simulator by implementing movement control by joint torques using PID controllers. As an unexpected by-product we find that it is simple to achieve robust walking behaviour on even terrain for a hexapod with the help of PID controllers and by specifying a trajectory of only a few joint configurations.