263 resultados para Infrared radiation
Resumo:
Purpose: Emotional intelligence (EI) is an increasingly important aspect of a health professional’s skill set. It is strongly associated with empathy, reflection and resilience; all key aspects of radiotherapy practice. Previous work in other disciplines has formed contradictory conclusions concerning development of EI over time. This study aimed to determine the extent to which EI can develop during a radiotherapy undergraduate course and identify factors affecting this. Methods and materials: This study used anonymous coded Likert-style surveys to gather longitudinal data from radiotherapy students relating to a range of self-perceived EI traits during their 3-year degree. Data were gathered at various points throughout the course from the whole cohort. Results: A total of 26 students provided data with 14 completing the full series of datasets. There was a 17·2% increase in self-reported EI score with a p-value<0·0001. Social awareness and relationship skills exhibited the greatest increase in scores compared with self-awareness. Variance of scores decreased over time; there was a reduced change in EI for mature students who tended to have higher initial scores. EI increase was most evident immediately after clinical placements. Conclusions: Radiotherapy students increase their EI scores during a 3-year course. Students reported higher levels of EI immediately after their clinical placement; radiotherapy curricula should seek to maximise on these learning opportunities.
Resumo:
BACKGROUND: The objective of this study was to describe prospectively quality of life (QOL) before and after radiotherapy for patients with prostate carcinoma. METHODS: Forty-three patients with T1-T3 prostate carcinoma who underwent conformal external beam radiation therapy were randomized either to the complete European Organization for Research and Treatment of Cancer (EORTC) QOL questionnaire (EORTC QLQ-C30) or the Medical Outcomes Study Group Short Form Health Survey (SF-36) at baseline, at 3 weeks and 6 weeks after initial treatment, and at 6 weeks and 5 months after the completion of radiotherapy. The measures were self-reported patient QOL, and values are given as the mean +/- standard error of the mean. Changes in QOL are described from baseline to the end of treatment in both questionnaire groups. RESULTS: Emotional role functioning, as measured with the SF-36 questionnaire, significantly improved from 68.2 +/- 9.9 at baseline to 93.3 +/- 5.2 at the end of therapy (P = 0.02). The EORTC QLQ-C30 questionnaire revealed consistent values of emotional functioning during treatment (72.7 +/- 5.9 at baseline) but showed a significant improvement 6 weeks after therapy (89.0 +/- 4.4; P = 0.01). Role functioning deteriorated from 80.1 +/- 6.5 at baseline to 62.5 +/- 8.8 at the end of radiotherapy (P = 0.02). Symptoms of fatigue were shown to increase significantly from 26.9 +/- 6.0 at baseline to 37.7 +/- 7.6 at the end of therapy (P = 0.02). No significant changes in the other dimensions were observed in either questionnaire. CONCLUSIONS: After radiotherapy for prostate carcinoma, patients experience a temporary deterioration of fatigue and role functioning, as measured with the EORTC QLQ-C-30. Despite physical deterioration, the authors observed an improvement in emotional functioning scores with both questionnaires. This may have been due to psychological adaptation and coping.
Resumo:
Emotional intelligence (EI) is defined as “the ability to recognise, understand and manage emotions in ourselves and others”. Initially identified as a concept applied to leadership and management, EI is now recognised as an important skill in a number of areas, including healthcare [2]. Empathy (the ability to see the world through someone else’s eyes) is known to play an important role in the therapeutic relationship with patients [3]. As EI has been shown to improve empathy [4], it is clear that developing the EI of student health professionals should benefit patients in the long term. It is not surprising, then, that a number of studies have investigated the role of EI in medical, dental and nursing students, however there is little reported evidence relating to EI development in pre-registration radiation therapy (RT) students.
Resumo:
Background Although thermal imaging can be a valuable technology in the prevention and management of diabetic foot disease, it is not yet widely used in clinical practice. Technological advancement in infrared imaging increases its application range. The aim was to explore the first steps in the applicability of high-resolution infrared thermal imaging for noninvasive automated detection of signs of diabetic foot disease. Methods The plantar foot surfaces of 15 diabetes patients were imaged with an infrared camera (resolution, 1.2 mm/pixel): 5 patients had no visible signs of foot complications, 5 patients had local complications (e.g., abundant callus or neuropathic ulcer), and 5 patients had difuse complications (e.g., Charcot foot, infected ulcer, or critical ischemia). Foot temperature was calculated as mean temperature across pixels for the whole foot and for specified regions of interest (ROIs). Results No diferences in mean temperature >1.5 °C between the ipsilateral and the contralateral foot were found in patients without complications. In patients with local complications, mean temperatures of the ipsilateral and the contralateral foot were similar, but temperature at the ROI was >2 °C higher compared with the corresponding region in the contralateral foot and to the mean of the whole ipsilateral foot. In patients with difuse complications, mean temperature diferences of >3 °C between ipsilateral and contralateral foot were found. Conclusions With an algorithm based on parameters that can be captured and analyzed with a high-resolution infrared camera and a computer, it is possible to detect signs of diabetic foot disease and to discriminate between no, local, or difuse diabetic foot complications. As such, an intelligent telemedicine monitoring system for noninvasive automated detection of signs of diabetic foot disease is one step closer. Future studies are essential to confirm and extend these promising early findings.
Automatic detection of diabetic foot complications with infrared thermography by asymmetric analysis
Resumo:
Early identification of diabetic foot complications and their precursors is essential in preventing their devastating consequences, such as foot infection and amputation. Frequent, automatic risk assessment by an intelligent telemedicine system might be feasible and cost effective. Infrared thermography is a promising modality for such a system. The temperature differences between corresponding areas on contralateral feet are the clinically significant parameters. This asymmetric analysis is hindered by (1) foot segmentation errors, especially when the foot temperature and the ambient temperature are comparable, and by (2) different shapes and sizes between contralateral feet due to deformities or minor amputations. To circumvent the first problem, we used a color image and a thermal image acquired synchronously. Foot regions, detected in the color image, were rigidly registered to the thermal image. This resulted in 97.8% ± 1.1% sensitivity and 98.4% ± 0.5% specificity over 76 high-risk diabetic patients with manual annotation as a reference. Nonrigid landmark-based registration with Bsplines solved the second problem. Corresponding points in the two feet could be found regardless of the shapes and sizes of the feet. With that, the temperature difference of the left and right feet could be obtained.
Resumo:
Background Patients with diabetic foot disease require frequent screening to prevent complications and may be helped through telemedical home monitoring. Within this context, the goal was to determine the validity and reliability of assessing diabetic foot infection using photographic foot imaging and infrared thermography. Subjects and Methods For 38 patients with diabetes who presented with a foot infection or were admitted to the hospital with a foot-related complication, photographs of the plantar foot surface using a photographic imaging device and temperature data from six plantar regions using an infrared thermometer were obtained. A temperature difference between feet of > 2.2 °C defined a ''hotspot.'' Two independent observers assessed each foot for presence of foot infection, both live (using the Perfusion-Extent-Depth- Infection-Sensation classification) and from photographs 2 and 4 weeks later (for presence of erythema and ulcers). Agreement in diagnosis between live assessment and (the combination of ) photographic assessment and temperature recordings was calculated. Results Diagnosis of infection from photographs was specific (> 85%) but not very sensitive (< 60%). Diagnosis based on hotspots present was sensitive (> 90%) but not very specific (<25%). Diagnosis based on the combination of photographic and temperature assessments was both sensitive (> 60%) and specific (> 79%). Intra-observer agreement between photographic assessments was good (Cohen's j = 0.77 and 0.52 for both observers). Conclusions Diagnosis of foot infection in patients with diabetes seems valid and reliable using photographic imaging in combination with infrared thermography. This supports the intended use of these modalities for the home monitoring of high-risk patients with diabetes to facilitate early diagnosis of signs of foot infection.
Resumo:
This thesis added new insight to research knowledge about the role that season and ultraviolet radiation (UV) exposure during pregnancy has on children's temperament and behaviours, using a nation-wide longitudinal study. It was found that young children born in summer months are likely to have problematic behaviours. The thesis also found that summer-born children are likely to receive lowest levels of UV exposure during the gestational period. Finally, this work showed that low gestational UV exposure is associated with an increased risk of behavioural problems in children.
Resumo:
An amorphous silicon carbonitride (Si1-x-yCxN y, x = 0:43, y = 0:31) coating was deposited on polyimide substrate using the magnetron-sputtering method. Exposure tests of the coated polyimide in atomic oxygen beam and vacuum ultraviolet radiation were performed in a ground-based simulator. Erosion kinetics measurements indicated that the erosion yield of the Si0.26C0.43N0.31 coating was about 1.5x and 1.8 × 10-26 cm3 /atom during exposure in single atomic oxygen beam, simultaneous atomic oxygen beam, and vacuum ultraviolet radiation, respectively. These values were 2 orders of magnitude lower than that of bare polyimide substrate. Scanning electron and atomic force microscopy, X-ray photoelectron spectrometer, and Fourier transformed infrared spectroscopy investigation indicated that during exposures, an oxide-rich layer composed of SiO2 and minor Si-C-O formed on the surface of the Si 0.26C0.43N0.31 coating, which was the main reason for the excellent resistance to the attacks of atomic oxygen. Moreover, vacuum ultraviolet radiation could promote the breakage of chemical bonds with low binding energy, such as C-N, C = N, and C-C, and enhance atomic oxygen erosion rate slightly.