418 resultados para Information-systems
Resumo:
The Australian e-Health Research Centre and Queensland University of Technology recently participated in the TREC 2012 Medical Records Track. This paper reports on our methods, results and experience using an approach that exploits the concept and inter-concept relationships defined in the SNOMED CT medical ontology. Our concept-based approach is intended to overcome specific challenges in searching medical records, namely vocabulary mismatch and granularity mismatch. Queries and documents are transformed from their term-based originals into medical concepts as defined by the SNOMED CT ontology, this is done to tackle vocabulary mismatch. In addition, we make use of the SNOMED CT parent-child `is-a' relationships between concepts to weight documents that contained concept subsumed by the query concepts; this is done to tackle the problem of granularity mismatch. Finally, we experiment with other SNOMED CT relationships besides the is-a relationship to weight concepts related to query concepts. Results show our concept-based approach performed significantly above the median in all four performance metrics. Further improvements are achieved by the incorporation of weighting subsumed concepts, overall leading to improvement above the median of 28% infAP, 10% infNDCG, 12% R-prec and 7% Prec@10. The incorporation of other relations besides is-a demonstrated mixed results, more research is required to determined which SNOMED CT relationships are best employed when weighting related concepts.
Resumo:
This paper outlines a novel approach for modelling semantic relationships within medical documents. Medical terminologies contain a rich source of semantic information critical to a number of techniques in medical informatics, including medical information retrieval. Recent research suggests that corpus-driven approaches are effective at automatically capturing semantic similarities between medical concepts, thus making them an attractive option for accessing semantic information. Most previous corpus-driven methods only considered syntagmatic associations. In this paper, we adapt a recent approach that explicitly models both syntagmatic and paradigmatic associations. We show that the implicit similarity between certain medical concepts can only be modelled using paradigmatic associations. In addition, the inclusion of both types of associations overcomes the sensitivity to the training corpus experienced by previous approaches, making our method both more effective and more robust. This finding may have implications for researchers in the area of medical information retrieval.
Resumo:
Dengue fever is one of the world’s most important vector-borne diseases. The transmission area of this disease continues to expand due to many factors including urban sprawl, increased travel and global warming. Current preventative techniques are primarily based on controlling mosquito vectors as other prophylactic measures, such as a tetravalent vaccine are unlikely to be available in the foreseeable future. However, the continually increasing dengue incidence suggests that this strategy alone is not sufficient. Epidemiological models attempt to predict future outbreaks using information on the risk factors of the disease. Through a systematic literature review, this paper aims at analyzing the different modeling methods and their outputs in terms of accurately predicting disease outbreaks. We found that many previous studies have not sufficiently accounted for the spatio-temporal features of the disease in the modeling process. Yet with advances in technology, the ability to incorporate such information as well as the socio-environmental aspect allowed for its use as an early warning system, albeit limited geographically to a local scale.
Resumo:
Many organisations, companies and libraries started to use participatory webs to extend their services and engage more users. However, some librarians are still hesitated to implement participatory webs in their libraries, particularly in developing countries. This paper explores the advantages and disadvantages of participatory webs focusing on collaborative tagging. This paper draws from the literature of published articles discussing topics but not limited to participatory webs, participatory libraries, collaborative tagging, folksonomy and taxonomy. The advantages of implementation of the participatory webs in the library outweigh the disadvantages of it. Participatory webs do not necessarily mean the death of information organisation but it can supplement and improves information organisation in the library. This paper may help to broaden knowledge of LIS professionals in the implementation of participatory webs in the library.
Resumo:
Substantial research efforts have been expended to deal with the complexity of concurrent systems that is inherent to their analysis, e.g., works that tackle the well-known state space explosion problem. Approaches differ in the classes of properties that they are able to suitably check and this is largely a result of the way they balance the trade-off between analysis time and space employed to describe a concurrent system. One interesting class of properties is concerned with behavioral characteristics. These properties are conveniently expressed in terms of computations, or runs, in concurrent systems. This article introduces the theory of untanglings that exploits a particular representation of a collection of runs in a concurrent system. It is shown that a representative untangling of a bounded concurrent system can be constructed that captures all and only the behavior of the system. Representative untanglings strike a unique balance between time and space, yet provide a single model for the convenient extraction of various behavioral properties. Performance measurements in terms of construction time and size of representative untanglings with respect to the original specifications of concurrent systems, conducted on a collection of models from practice, confirm the scalability of the approach. Finally, this article demonstrates practical benefits of using representative untanglings when checking various behavioral properties of concurrent systems.
Resumo:
Good management, supported by accurate, timely and reliable health information, is vital for increasing the effectiveness of Health Information Systems (HIS). When it comes to managing the under resourced health systems of developing countries, information-based decision making is particularly important. This paper reports findings of a self-report survey that investigated perceptions of local health managers (HMs) of their own regional HIS in Sri Lanka. Data were collected through a validated, pre-tested postal questionnaire, and distributed among a selected group of HMs to elicit their perceptions of the current HIS in relation to information generation, acquisition and use, required reforms to the information system and application of information and communication technology (ICT). Results based on descriptive statistics indicated that the regional HIS was poorly organised and in need of reform; that management support for the system was unsatisfactory in terms of relevance, accuracy, timeliness and accessibility; that political pressure and community and donor requests took precedence over vital health information when management decisions were made; and use of ICT was unsatisfactory. HIS strengths included user-friendly paper formats, a centralised planning system and an efficient disease notification system; weaknesses were lack of comprehensiveness, inaccuracy, and lack of a feedback system. Responses of participants indicated that HIS would be improved by adopting an internationally accepted framework and introducing ICT applications. Perceived barriers to such improvements were high initial cost of educating staff to improve computer literacy, introduction of ICTs, and HIS restructure. We concluded that the regional HIS of Central Province, Sri Lanka had failed to provide much needed information support to HMs. These findings are consistent with similar research in other developing countries and reinforce the need for further research to verify causes of poor performance and to design strategic reforms to improve HIS in regional Sri Lanka.
Resumo:
What are the information practices of teen content creators? In the United States over two thirds of teens have participated in creating and sharing content in online communities that are developed for the purpose of allowing users to be producers of content. This study investigates how teens participating in digital participatory communities find and use information as well as how they experience the information. From this investigation emerged a model of their information practices while creating and sharing content such as film-making, visual art work, story telling, music, programming, and web site design in digital participatory communities. The research uses grounded theory methodology in a social constructionist framework to investigate the research problem: what are the information practices of teen content creators? Data was gathered through semi-structured interviews and observation of teen’s digital communities. Analysis occurred concurrently with data collection, and the principle of constant comparison was applied in analysis. As findings were constructed from the data, additional data was collected until a substantive theory was constructed and no new information emerged from data collection. The theory that was constructed from the data describes five information practices of teen content creators. The five information practices are learning community, negotiating aesthetic, negotiating control, negotiating capacity, and representing knowledge. In describing the five information practices there are three necessary descriptive components, the community of practice, the experiences of information and the information actions. The experiences of information include information as participation, inspiration, collaboration, process, and artifact. Information actions include activities that occur in the categories of gathering, thinking and creating. The experiences of information and information actions intersect in the information practices, which are situated within the specific community of practice, such as a digital participatory community. Finally, the information practices interact and build upon one another and this is represented in a graphic model and explanation.
Resumo:
This paper presents a graph-based method to weight medical concepts in documents for the purposes of information retrieval. Medical concepts are extracted from free-text documents using a state-of-the-art technique that maps n-grams to concepts from the SNOMED CT medical ontology. In our graph-based concept representation, concepts are vertices in a graph built from a document, edges represent associations between concepts. This representation naturally captures dependencies between concepts, an important requirement for interpreting medical text, and a feature lacking in bag-of-words representations. We apply existing graph-based term weighting methods to weight medical concepts. Using concepts rather than terms addresses vocabulary mismatch as well as encapsulates terms belonging to a single medical entity into a single concept. In addition, we further extend previous graph-based approaches by injecting domain knowledge that estimates the importance of a concept within the global medical domain. Retrieval experiments on the TREC Medical Records collection show our method outperforms both term and concept baselines. More generally, this work provides a means of integrating background knowledge contained in medical ontologies into data-driven information retrieval approaches.
Resumo:
Retrieving information from Twitter is always challenging due to its large volume, inconsistent writing and noise. Most existing information retrieval (IR) and text mining methods focus on term-based approach, but suffers from the problems of terms variation such as polysemy and synonymy. This problem deteriorates when such methods are applied on Twitter due to the length limit. Over the years, people have held the hypothesis that pattern-based methods should perform better than term-based methods as it provides more context, but limited studies have been conducted to support such hypothesis especially in Twitter. This paper presents an innovative framework to address the issue of performing IR in microblog. The proposed framework discover patterns in tweets as higher level feature to assign weight for low-level features (i.e. terms) based on their distributions in higher level features. We present the experiment results based on TREC11 microblog dataset and shows that our proposed approach significantly outperforms term-based methods Okapi BM25, TF-IDF and pattern based methods, using precision, recall and F measures.
Resumo:
Phenomenography is a research approach devised to allow the investigation of varying ways in which people experience aspects of their world. Whilst growing attention is being paid to interpretative research in LIS, it is not always clear how the outcomes of such research can be used in practice. This article explores the potential contribution of phenomenography in advancing the application of phenomenological and hermeneutic frameworks to LIS theory, research and practice. In phenomenography we find a research toll which in revealing variation, uncovers everyday understandings of phenomena and provides outcomes which are readily applicable to professional practice. THe outcomes may be used in human computer interface design, enhancement, implementation and training, in the design and evaluation of services, and in education and training for both end users and information professionals. A proposed research territory for phenomenography in LIS includes investigating qualitative variation in the experienced meaning of: 1) information and its role in society 2) LIS concepts and principles 3) LIS processes and; 4) LIS elements.
Resumo:
The design and construction community has shown increasing interest in adopting building information models (BIMs). The richness of information provided by BIMs has the potential to streamline the design and construction processes by enabling enhanced communication, coordination, automation and analysis. However, there are many challenges in extracting construction-specific information out of BIMs. In most cases, construction practitioners have to manually identify the required information, which is inefficient and prone to error, particularly for complex, large-scale projects. This paper describes the process and methods we have formalized to partially automate the extraction and querying of construction-specific information from a BIM. We describe methods for analyzing a BIM to query for spatial information that is relevant for construction practitioners, and that is typically represented implicitly in a BIM. Our approach integrates ifcXML data and other spatial data to develop a richer model for construction users. We employ custom 2D topological XQuery predicates to answer a variety of spatial queries. The validation results demonstrate that this approach provides a richer representation of construction-specific information compared to existing BIM tools.
Resumo:
Research on Enterprise Resource Planning (ERP) Systems is becoming a well-established research theme in Information Systems (IS) research. Enterprise Resource Planning Systems, given its unique differentiations with other IS applications, have provided an interesting backdrop to test and re-test some of the key and fundamental concepts in IS. While some researchers have tested well-established concepts of technology acceptance, system usage and system success in the context of ERP Systems, others have researched how new paradigms like cloud computing and social media integrate with ERP Systems. Moreover, ERP Systems provided the context for cross disciplinary research such as knowledge management, project management and business process management research. Almost after two-decades since its inception in IS research, this paper provides a critique of 198 papers published on ERP Systems since 2006-2012. We observe patterns on ES research, provide comparisons to past studies and provide future research directions.
Resumo:
A global, online quantitative study among 300 consumers of digital technology products found the most reliable information sources were friends, family or word of mouth (WOM) from someone they knew, followed by expert product reviews, and product reviews written by other consumers. The most unreliable information sources were advertising or infomercials, automated recommendations based on purchasing patterns or retailers. While a very small number of consumers evaluated products online, rating of products and online discussions were more frequent activities. The most popular social media websites for reviews were Facebook, Twitter, Amazon and e-Bay, indicating the importance of WOM in social networks and online media spaces that feature product reviews as it is the most persuasive piece of information in both online and offline social networks. These results suggest that ‘social customers’ must be considered as an integral part of a marketing strategy.
Resumo:
This paper presents the findings from the first phase of a larger study into the information literacy of website designers. Using a phenomenographic approach, it maps the variation in experiencing the phenomenon of information literacy from the viewpoint of website designers. The current result reveals important insights into the lived experience of this group of professionals. Analysis of data has identified five different ways in which website designers experience information literacy: problem-solving, using best practices, using a knowledge base, building a successful website, and being part of a learning community of practice. As there is presently relatively little research in the area of workplace information literacy, this study provides important additional insights into our understanding of information literacy in the workplace, especially in the specific context of website design. Such understandings are of value to library and information professionals working with web professionals either within or beyond libraries. These understandings may also enable information professionals to take a more proactive role in the industry of website design. Finally, the obtained knowledge will contribute to the education of both website-design science and library and information science (LIS) students.
Resumo:
Measures of semantic similarity between medical concepts are central to a number of techniques in medical informatics, including query expansion in medical information retrieval. Previous work has mainly considered thesaurus-based path measures of semantic similarity and has not compared different corpus-driven approaches in depth. We evaluate the effectiveness of eight common corpus-driven measures in capturing semantic relatedness and compare these against human judged concept pairs assessed by medical professionals. Our results show that certain corpus-driven measures correlate strongly (approx 0.8) with human judgements. An important finding is that performance was significantly affected by the choice of corpus used in priming the measure, i.e., used as evidence from which corpus-driven similarities are drawn. This paper provides guidelines for the implementation of semantic similarity measures for medical informatics and concludes with implications for medical information retrieval.