439 resultados para ISOPROTEIC TREATMENTS
Resumo:
Asthma is an incapacitating disease of the respiratory system, which causes extensive morbidity and mortality worldwide. Asthma affects more than 300 million people globally(Masoli et al. 2004). In Australia, it affects 10.2% of the population (Masoli et al. 2004) and causes 60,000 people to be hospitalised annually. Health care expenditure due to asthma in Australia was $606 million in 2004–2005. There are four primary biological factors that function in the initiation and exacerbation of asthma. Airway inflammation is important as it is often the first response to an airway insult, initiating the three other components: bronchoconstriction, mucus hyper-secretion and hyper-reactivity. The mediators involved in asthma are still not well understood, and current anti-inflammatory corticosteroid treatments are not effective with all asthmatics. As there is currently no cure for asthma, and airway inflammation is the primary component of the disease, it is important that we understand and investigate the mediators of airway inflammation to look for a potential cure and to produce better therapeutics to treat the inflammation. Trefoil factors (TFFs) and secretoglobins (SCGBs) are small secreted proteins involved in the mediation of inflammation and epithelial restitution. TFFs are pro-inflammatory and SCGBs anti-inflammatory by nature. The hypothesis of this study is that in response to induced acute airway inflammation, the expression of TFF1 and TFF3 will increase and expression of SCGB1A1 and SCGB3A2 will decrease in non-asthmatics (N-A), asthmatics medicating with bronchodilators (A-BD) and asthmatics medicating with corticosteroids (A-ST). When comparing the three groups, we expect to see higher expression of the TFFs in the A-BD group compared to the N-A and A-ST groups, indicating that inflammation is mediated by TFFs in asthma and that corticosteroid medication controls their expression as part of the control of inflammation. We expect to see the opposite with SCGBs, with a greater decrease in the A-BD group compared to the other two groups, suggesting that the A-BD group has the least anti-inflammatory activity in response to inflammatory insult. Epigenetic modification plays a role in the regulation of genes that initiate disease states such as inflammatory conditions and cancers. Histone acetylation is one such modification, which involves the acetylation of histones in chromatin by histone acetyltransferases (HATs). This increases the transcription of genes involved with inflammation or enrols histone deacetylases (HDACs) to down-regulate the transcription of inflammatory genes. These HATs and HDACs work in a homeostatic fashion; however, in the event of inflammation, increased HAT activity can stimulate further inflammation, which is believed to be the mechanism involved in some inflammatory diseases. This study hypothesises that in response to inflammation, the expression of HDACs (HDAC1-5) will decrease and the expression of HATs (NCOA1-3, HAT-1 and CREBBP) will increase in all groups. When comparing the expression between the groups, it was expected that a greater decrease in HDACs and a greater increase in HATs will be seen in the A-BD group compared to the other two groups. This would identify histone acetylation as a mechanism involved in the inflammatory condition of asthma and indicate that corticosteroids may treat the inflammation in asthma at least in part by controlling histone acetylation. The aim of the project was to compare the expression of inflammatory genes TFF1, TFF3, SCGB1A1 and SCGB3A2, as well as to compare the gene expression of HDAC1-5, NCOA1-3, HAT-1 and CREBBP within and between N-A (n=15), A-BD (n=15) and A-ST (n=15) groups in response to inflammation. This was performed by collecting airway cells and proteins by sputum induction in three sessions. The sessions were coordinated into an initial baseline collection (SI-1), followed by a second session at least one week later (SI-2) and a third session, six hours after SI-2 to collect a sample containing the resultant acute inflammation caused in SI-2 (SI-3). Analysis of the SI-1 and SI-2 samples in all three groups had high amounts of variability between samples. The samples were taken at least one weak apart and the environmental stimuli on each participant outside of the testing sessions could not be controlled. For this reason, the SI-1 samples were not used for analysis; instead SI-2 and SI-3 samples were compared as they were same-day collections, reducing the probability of differences being due to anything other than the sputum induction. The gene expressions of the TFFs, SCGBs, HDACs and HATs were analysed using real-time PCR. Western blot analysis was performed to analyse the protein concentrations of the TFFs and SCGBs in secreted fractions of the sputum collection. Both the secreted and intracellular protein fractions collected from the sputum inductions for pre- and post-inflammation (SI-2, SI-3) samples of the N-A and A-BD groups were analysed using a proteomic method called iTRAQ. This allowed the comparison of the change in protein expression as a result of airway inflammation in each group. This technique was used as a discovery method to identify novel proteins that are modulated by induced acute airway inflammation. Any proteins of interest would then be further validated and used for future research. Inflammation was achieved in the SI-3 samples of the N-A group with a 21% unit increase in % neutrophils compared to SI-2 (p=0.01). The N-A group had a marked 5.5-fold decrease in HDAC1 gene expression in SI-3 compared to SI-2 (p=0.03). No differences were seen in any of the TFFs, SCGBs or any of the rest of the HDACs and HATs. Western blot data did not display any significant changes in the protein levels of the TFFs and SCGBs analysed. However, non-significant analysis of the data displayed increases in TFF1 and TFF3, and decreases in SCGB1A1 and SCGB3A2 for the majority of SI-3 samples compared to SI-2. The A-BD group also presented a marked increase in neutrophils in the SI-3 samples compared to SI-2 (27% unit increase, p=0.04). The A-BD group had a significant increase in TFF3 and SCGB1A1 gene expression concomitant with induced acute airway inflammation. A 7.3-fold increase in TFF3 (p=0.05) in SI-3 indicated that TFF3 is linked to inflammation in asthmatics. A 2.8-fold increase in SCGB1A1 (p=0.03) indicated that this gene is also up-regulated, suggesting that this SCGB is expressed to try to combat induced acute airway inflammation. No significant changes were seen in any of the other genes analysed. Western blot data did not display any significant changes in the protein levels of the TFFs and SCGBs analysed. However, non-significant analysis of the data displayed an increase in TFF1 and TFF3, and a decrease in SCGB1A1 and SCGB3A2 in SI-3, similar to that seen in the N-A group. The A-ST group was different from the A-BD group, characterised by the use of inhaled corticosteroid medication to treat asthma symptoms. Inhaled corticosteroids are known to treat asthma symptoms through the control of inflammation. Therefore, it was expected that corticosteroid medication would also control the expression of TFFs, SCGBs, HATs and HDACs. Gene expression results only identified a 7.6-fold decrease in HDAC2 expression in SI-3 (p=0.001), which is proposed to be due to the up-regulation of HDAC2 protein that is known to be a function of corticosteroid use. Western blot data did not display any significant changes in the protein levels of the TFFs and SCGBs analysed. The gene expression in SI-2 and SI-3 in each group was compared. When comparing the A-BD group to the N-A group, a 9-fold increase in TFF3 (p=0.008) and a 34-fold increase in SCGB1A1 (p=0.03) were seen in the SI-3 samples. Comparisons of the A-ST group to the N-A group had an increased expression in SI-2 samples for HDAC5 (3.6-fold, p=0.04), NCOA2 (8.5-fold, p=0.04), NCOA3 (17-fold, p=0.01), HAT-1 (36-fold, p=0.003) and CREBBP (13-fold, p=0.001). The SI-3 samples in the A-ST group compared to the N-A group had increased expression for HDAC1 (6.4-fold, p=0.04), HDAC5 (5.2-fold, p=0.008), NCOA2 (9.6-fold, p=0.03), NCOA3 (16-fold, p=0.06), HAT-1 (41-fold, p<0.001) and CREBBP (31-fold, p=0.001). Comparisons of the A-ST group to the A-BD group had SI-2 increases in HDAC1 (3.8-fold, p=0.03), NCOA3 (4.5-fold, p=0.03), HAT-1 (5.3-fold, p=0.01) and CREBBP (23-fold, p=0.001), while SI-3 comparisons saw a decrease in HDAC2 (41-fold, p=0.008) and increases in HAT-1 (4.3-fold, p=0.003) and CREBBP (40-fold, p=0.001). Results showed that TFF3 and SCGB1A1 expression is higher in asthmatics than non-asthmatics and that histone acetylation is more active in the A-ST group than either the N-A or A-BD group, which suggests that histone acetylation activity may be positively correlated with asthma severity. The iTRAQ proteomic analysis of the secreted protein samples identified the SCGB1A1 protein and found it to be decreased in both the N-A and A-BD groups post-inflammation, but significantly so only in the A-BD group. Although no significant results were obtained from the western blot data, both groups displayed a decrease in SCGB1A1 concentration in SI-3 samples, suggesting a correlation with the proteomic data. Only 31 peptides were identified from the secreted samples. The intracellular iTRAQ analysis successfully identified 664 peptides, eight of which had differential expression in association with induced acute airway inflammation. Significant increases were seen in the A-BD group in SI-3 compared to SI-2 than in the N-A group in chloride intracellular channel protein 1, keratin-19, eosinophil cationic protein, calnexin, peroxiredoxin-5, and ATP-synthase delta subunit, while decreases were seen in cystatin-A and mucin-5AC. The iTRAQ analysis was only a discovery measure and further validation must be performed. In summary, the expression of TFFs and SCGBs differed between non-asthmatics and asthmatics. It is clear that TFF3 is active in the airway inflammation associated with asthma as indicated by an increase associated with inflammation in the A-BD group compared to the N-A group. Results for HDAC and HAT genes showed high HAT expression in the A-ST group compared to the N-A and A-BD groups, suggesting that histone acetyltransferases may be responsible for the characteristic unregulated inflammatory symptoms of asthmatics taking corticosteroids. Interestingly, corticosteroid medication did not seem to silence the expression of the analysed HAT genes, which indicates that corticosteroids may not control inflammation by direct regulation of HATs, but instead by competition, most probably with HDAC2 protein. As a discovery tool, iTRAQ is a potent method to both identify and compare the concentration of proteins between samples. The method is a powerful first step into the identification of novel proteins that are regulated in response to different treatments.
Resumo:
In this article, we investigate experimentally whether people search optimally and how price promotions influence search behaviour. We implement a sequential search task with exogenous price dispersion in a baseline treatment and introduce discounts in two experimental treatments. We find that search behaviour is roughly consistent with optimal search but also observe some discount biases. If subjects do not know in advance where discounts are offered, the purchase probability is increased by 19 percentage points in shops with discounts, even after controlling for the benefit of the discount and for risk preferences. If consumers know in advance where discounts are given, then the bias is only weakly significant and much smaller (7 percentage points).
Resumo:
Aim: To show the validity and reliability of the translated Hill-Bone scale on 110 hypertensive participants from an Arabic speaking country. Background: With the wide spread availability of treatment, individuals with hypertension have reported various levels of adherence to their medications. Flexible and practical methods of measuring adherence are the use of surveys, scales and interviews. There is a scarcity in Arabic tools and scales that measure levels of adherence to antihypertensive treatments in the Arabic speaking context. Design and Methods: A cross-sectional study was conducted among 110 individuals diagnosed with hypertension and from an Arabic speaking country. The Hill-Bone scale includes three subscales that measure salt intake, medication adherence and appointment keeping. Given the focus on the pharmacological management of hypertensive patients, only items related to medication adherence and appointment keeping subscales were used. The scale was translated by following a comprehensive and accepted method of translation. Results: Instrument reliability was tested by identifying the Cronbach’s alpha coefficient. The subscale for medication adherence in the Hill-Bone scale reported an acceptable level of reliability (Cronbach’s alpha =0.76). Compared with other translated versions of the Hill-Bone scale, the scale also reported good reliability and validity. Conclusion: Results indicate that the Arabic translated version of the Hill-Bone scale has an acceptable level of reliability and validity and therefore can be used in Arabic speaking populations.
Resumo:
Migraine is a painful and debilitating, neurovascular disease. Current migraine head pain treatments work with differing efficacies in migraineurs. The opioid system plays an important role in diverse biological functions including analgesia, drug response and pain reduction. The A118G single nucleotide polymorphism (SNP) in exon 1 of the μ-opioid receptor gene (OPRM1) has been associated with elevated pain responses and decreased pain threshold in a variety of populations. The aim of the current preliminary study was to test whether genotypes of the OPRM1 A118G SNP are associated with head pain severity in a clinical cohort of female migraineurs. This was a preliminary study to determine whether genotypes of the OPRM1 A118G SNP are associated with head pain severity in a clinical cohort of female migraineurs. A total of 153 chronic migraine with aura sufferers were assessed for migraine head pain using the Migraine Disability Assessment Score instrument and classified into high and low pain severity groups. DNA was extracted and genotypes obtained for the A118G SNP. Logistic regression analysis adjusting for age effects showed the A118G SNP of the OPRM1 gene to be significantly associated with migraine pain severity in the test population (P = 0.0037). In particular, G118 allele carriers were more likely to be high pain sufferers compared to homozygous carriers of the A118 allele (OR = 3.125, 95 % CI = 1.41, 6.93, P = 0.0037). These findings suggest that A118G genotypes of the OPRM1 gene may influence migraine-associated head pain in females. Further investigations are required to fully understand the effect of this gene variant on migraine head pain including studies in males and in different migraine subtypes, as well as in response to head pain medication.
Resumo:
Background The methylenetetrahydrofolate reductase (MTHFR) gene variant C677T has been implicated as a genetic risk factor in migraine susceptibility, particularly in Migraine with Aura. Migraine, with and without aura (MA and MO) have many diagnostic characteristics in common. It is postulated that migraine symptomatic characteristics might themselves be influenced by MTHFR. Here we analysed the clinical profile, migraine symptoms, triggers and treatments of 267 migraineurs previously genotyped for the MTHFR C677T variant. The chi-square test was used to analyse all potential relationships between genotype and migraine clinical variables. Regression analyses were performed to assess the association of C677T with all migraine clinical variables after adjusting for gender. Findings The homozygous TT genotype was significantly associated with MA (P < 0.0001) and unilateral head pain (P = 0.002). While the CT genotype was significantly associated with physical activity discomfort (P < 0.001) and stress as a migraine trigger (P = 0.002). Females with the TT genotype were significantly associated with unilateral head pain (P < 0.001) and females with the CT genotype were significantly associated with nausea (P < 0.001), osmophobia (P = 0.002), and the use of natural remedy for migraine treatment (P = 0.003). Conversely, male migraineurs with the TT genotype experienced higher incidences of bilateral head pain (63% vs 34%) and were less likely to use a natural remedy as a migraine treatment compared to female migraineurs (5% vs 20%). Conclusions MTHFR genotype is associated with specific clinical variables of migraine including unilateral head pain, physical activity discomfort and stress.
Resumo:
The Hepatitis C virus (HCV) affects some 150 million people worldwide. However, unlike hepatitis A and B there is no vaccination for HCV and approximately 75% of people exposed to HCV develop chronic hepatitis. In Australia, around 226,700 people live with chronic HCV infection costing the government approximately $252 million per year. Historically, the standard approved/licenced treatment for HCV is pegylated interferon with ribavirin. There are major drawbacks with interferon-based therapy including side effects, long duration of therapy, limited access and affordability. Our previous survey of an at-risk population reported HCV treatment coverage of only 5%. Since April 2013, a new class of interferon-free treatments for chronic HCV is subsidised under the Pharmaceutical Benefits Scheme: boceprevir and telaprevir - estimated to cost the Australian Government in excess of $220 million over five years. Other biologic interferon-free therapeutic agents are scheduled to enter the Australian market. Use of small molecule generic pharmaceuticals has been advocated as a means of public cost savings. However, with the new biologic agents, generics (biosimilars) may not be feasible or straightforward, due to long patent life; marketing exclusivity; and regulatory complexity for these newer products.
Resumo:
Migraine is a common idiopathic primary headache disorder with significant mental, physical and social health implications. Accompanying an intense unilateral pulsating head pain other characteristic migraine symptoms include nausea, emesis, phonophobia, photophobia and in approximately 20-30% of migraine cases, neurologic disturbances associated with the aura phase. Although selective serotonin (5-HT) receptor agonists (i.e., 5-HT(1B/1D)) are successful in alleviating migrainous symptoms in < or = 70% of known sufferers, for the remaining 30%, additional migraine abortive medications remain unsuccessful, not tested or yet to be identified. Genetic characterization of the migrainous disorder is making steady progress with an increasing number of genomic susceptibility loci now identified on chromosomes 1q, 4q, 5q, 6p, 11q, 14q, 15q, 17p, 18q, 19p and Xq. The 4q, 5q, 17p and 18q loci involve endophenotypic susceptibility regions for various migrainous symptoms. In an effort to develop individualized pharmacotherapeutics, the identification of these migraine endophenotypic loci may well be the catalyst needed to aid in this goal. In this review the authors discuss the present treatment of migraine, known genomic susceptibility regions and results from migraine (genetic) association studies. The authors also discuss pharmacogenomic considerations for more individualized migraine prophylactic treatments.
Resumo:
Background Matrix metalloproteinases (MMPs) are central to degradation of the extracellular matrix and basement membrane during both normal and carcinogenic tissue remodeling. MT1-MMP (MMP-14) and stromelysin-3 (MMP-11) are two members of the MMP family of proteolytic enzymes that have been specifically implicated in breast cancer progression. Expressed in stromal fibroblasts adjacent to epithelial tumour cells, the mechanism of MT1-MMP and MMP-11 induction remains unknown. Methods To investigate possible mechanisms of induction, we examined the effects of a number of plausible regulatory agents and treatments that may physiologically influence MMP expression during tumour progression. Thus NIH3T3 and primary mouse embryonic fibroblasts (MEFs) were: a) treated with the cytokines IL-1β, IL-2, IL-6, IL-8 and TGF-β for 3, 6, 12, 24, and 48 hours; b) grown on collagens I, IV and V; c) treated with fibronectin, con-A and matrigel; and d) co-cultured with a range of HBC (human breast cancer) cell lines of varied invasive and metastatic potential. Results Competitive quantitative RT-PCR indicated that MMP-11 expression was stimulated to a level greater than 100%, by 48 hour treatments of IL-1β, IL-2, TGF-β, fibronectin and collagen V. No other substantial changes in expression of MMP-11 or MT1-MMP in either tested fibroblast culture, under any treatment conditions, were observed. Conclusion We have demonstrated significant MMP-11 stimulation in mouse fibroblasts using cytokines, matrix constituents and HBC cell lines, and also some inhibition of MT1-MMP. Our data suggest that the regulation of these genes in the complex stromal-epithelial interactions that occur in human breast carcinoma, is influenced by several mechanisms.
Resumo:
Structurally novel compounds able to block voltage-gated Ca2+ channels (VGCCs) are currently being sought for the development of new drugs directed at neurological disorders. Fluorescence techniques have recently been developed to facilitate the analysis of VGCC blockers in a multi-well format. By utilising the small cell lung carcinoma cell line, NCI-H146, we were able to detect changes in intracellular Ca2+ concentration ([Ca2+]i) using a fluorescence microplate reader. NCI-H146 cells have characteristics resembling those of neuronal cells and express multiple VGCC subtypes, including those of the L-, N- and P-type. We found that K+-depolarisation of fluo-3 loaded NCI-H146 cells causes a rapid and transient increase in fluorescence, which was readily detected in a 96-well plate. Extracts of Australian plants, including those used traditionally as headache or pain treatments, were tested in this study to identify those affecting Ca2+ influx following membrane depolarisation of NCI-H146 cells. We found that E. bignoniiflora, A. symphyocarpa and E. vespertilio caused dose-dependent inhibition of K+-depolarised Ca2+ influx, with IC50 values calculated to be 234, 548 and 209 μg/ml, respectively. This data suggests an effect of these extracts on the function of VGCCs in these cells. Furthermore, we found similar effects using a fluorescence laser imaging plate reader (FLIPR) that allows simultaneous measurement of real-time fluorescence in a multi-well plate. Our results indicate that the dichloromethane extract of E. bignoniiflora and the methanolic extract of E. vespertilio show considerable promise as antagonists of neuronal VGCCs. Further analysis is required to characterise the function of the bioactive constituents in these extracts and determine their selectivity on VGCC subtypes.
Resumo:
Extracts of Australian plants were screened to detect constituents affecting adenosine di-phosphate (ADP) induced platelet aggregation and [14C]5-hydroxytryptamine (5-HT) release. Extracts of four tested plants including, Eremophila gilesii, Erythrina vespertilio, Cymbopogon ambiguus, and Santalum acuminatum, were found to cause significant inhibition of platelet 5-HT release. Inhibition levels ranged from 56-98%, and was not due to the non-specific effects of protein binding tannins. These extracts, and those we have previously identified as being active, were examined further to determine if they affect epinephrine (EPN), arachidonic acid (A.A) or collagen stimulated platelet aggregation and 5-HT release. Among those extracts investigated, we found that both the methanolic extract of E. vespertilio and the dichloromethane (DCM) extract of C. ambiguus were most potent and caused significant inhibition of platelet activation induced by EPN, A.A and to a lesser extent by collagen. Inhibition of ADP induced platelet 5-HT release by both of these extracts, was dose-dependent, with IC50 values for E. vespertilio and C. ambiguus estimated to be 20.4 microl (1.855 mg/ml) and 8.34 microl (0.758 mg/ml), respectively. Overall, C. ambiguus exhibited most activity and also caused dose-dependent inhibition of A.A induced platelet activation. These results indicate that inhibition may occur specifically at a site within the A.A pathway, and suggest the presence of a cyclo-oxygenase inhibitor. Both E. vespertilio and C. ambiguus are reported to be traditional headache treatments, with the present study providing evidence that they affect 5-HT release.
Resumo:
Skin cancer is one of the most commonly occurring cancer types, with substantial social, physical, and financial burdens on both individuals and societies. Although the role of UV light in initiating skin cancer development has been well characterized, genetic studies continue to show that predisposing factors can influence an individual's susceptibility to skin cancer and response to treatment. In the future, it is hoped that genetic profiles, comprising a number of genetic markers collectively involved in skin cancer susceptibility and response to treatment or prognosis, will aid in more accurately informing practitioners' choices of treatment. Individualized treatment based on these profiles has the potential to increase the efficacy of treatments, saving both time and money for the patient by avoiding the need for extensive or repeated treatment. Increased treatment responses may in turn prevent recurrence of skin cancers, reducing the burden of this disease on society. Currently existing pharmacogenomic tests, such as those that assess variation in the metabolism of the anticancer drug fluorouracil, have the potential to reduce the toxic effects of anti-tumor drugs used in the treatment of non-melanoma skin cancer (NMSC) by determining individualized appropriate dosage. If the savings generated by reducing adverse events negate the costs of developing these tests, pharmacogenomic testing may increasingly inform personalized NMSC treatment.
Resumo:
Sandy soils have low nutrient holding capacity and high water conductivity. Consequently, nutrients applied as highly soluble chemical fertilisers are prone to leaching, particularly in heavily irrigated environments such as horticultural soils and golf courses. Amorphous derivatives of kaolin with high cation exchange capacity may be loaded with desired nutrients and applied as controlledrelease fertilisers. Kaolin is an abundant mineral, which can be converted to a meso-porous amorphous derivative (KAD) using facile chemical processes. KAD is currently being used to sequester ammonium from digester effluent in sewage treatment plants in a commercial environment. This material is also known in Australia by the trade name MesoLite. The ammonium-saturated form of KAD may be applied to soils as a nitrogen fertiliser. Up to 7% N can be loaded onto KAD by contacting it with high-ammonia concentration wastewater from sewerage treatment plants. This poster paper demonstrates plant uptake of nitrogen from KAD and compares its efficiency as a fertiliser with NH4SO4. Rye grass was grown in 1kg pots in a glass-house. Nitrogen was applied at a range of rates using NH4SO4 and two KAD materials carrying 7% and 3% nitrogen, respectively. All other nutrients were applied in adequate amounts. All treatments were replicated three times. Plants were harvested after four weeks. Dry mass and N concentrations were determined by standard methods. At all N application rates, ammonium-loaded KAD produced significantly higher plant mass than for NH4SO4. The lower fertiliser effectiveness of NH4SO4 is attributed to possible loss of some N through volatilisation. Of the two KAD types, the material with lower CEC value supported slightly higher plant yields. The KAD materials did not show any adverse effect on availability of trace elements, as evidenced by lack of deficiency symptoms and plant analyses. Clearly, nitrogen loaded on to KAD in the form of ammonium is likely to be protected from leaching, but is still available to plants. These data suggest that KAD-based fertilisers may be suitable substitutes for water soluble N, K and other cation fertilisers for leaching soils.
Resumo:
This paper assesses Intelligent Transportation Systems (ITS) to identify safety systems that are most likely to reduce driver errors at railway crossings. ITS technologies have been integrated in order to develop improved evaluation tools to reduce crashes at railway crossings. Although emerging technologies, knowledge, innovative interventions have been introduced to change driver behaviour, there is a lack of research on the impact of integrating ITS technologies and transportation simulation on drivers. The outcomes of ITS technologies for complementing traditional signage were compared with those of current safety systems (passive and active) at railway crossings. Three ITS technologies are compared with current treatments, in terms of compliance rate and vehicle speed profiles. It is found that ITS technologies improve compliance rate by 17~30% and also encourage drivers to slow down earlier compared to current passive and active crossings when there is a train approaching the railway crossings.
Resumo:
Introduction: Apoptosis is the final destiny of many cells in the body, though this process has been observed in some pathological processes. One of these pathological processes is femoral head non-traumatic osteonecrosis. Among many pro/anti-apoptotic factors, nitric oxide has recently been an area of further interest. Osteocyte apoptosis and its relation to pro-apoptotic action invite further research, and the inducible form of nitric oxide synthase (iNOS)—which produces a high concentration of nitric oxide—has been flagged. The aim of this study was to investigate the effect of hyperbaric oxygen (HBO) and inducible NOS suppressor (Aminoguanidine) in prevention of femoral head osteonecrosis in an experimental model of osteonecrosis in spontaneous hypertensive rats (SHRs). Methods: After animal ethic approval 34 SHR rats were divided into four groups. Ten rats were allocated to the control group without any treatment, and eight rats were allocated to three treatment groups namely: HBO, Aminoguanidine (AMG), and the combination of HBO and AMG treatments (HBO+AMG). The HBO group received 250 kPa of oxygen via hyperbaric chamber for 30 days started at their 5th week of life; the AMG group received 1mg/ml of AMG in drinking water from the fifth week till the 17th week of life; and the last group received a combination of these treatments. Rats were sacrificed at the end of the 17th week of life and both femurs were analysed for evidence of osteonecrosis using Micro CT scan and H&E staining. Also, osteocyte apoptosis and the presence of two different forms of NOS (inducible (iNOS) and endothelial (eNOS)) were analysed by immunostaining and apoptosis staining (Hoechst and TUNEL). Results: Bone morphology of metaphyseal and epiphyseal area of all rats were investigated and analysed. Micro CT findings revealed significantly higher mean fractional trabecular bone volume (FBV) of metaphyseal area in untreated SHRs compared with all other treatments (HBO, P<0.05, HBO+AMG, P<0.005, and AMG P<0.001). Bone surface to volume ratio also significantly increased with HBO+AMG and AMG treatments when compared with the control group (18.7 Vs 20.8, P<0.05, and 18.7 Vs 21.1, P<0.05). Epiphyseal mean FBV did not change significantly among groups. In the metaphyseal area, trabecular thickness and numbers significantly decreased with AMG treatment, while trabecular separation significantly increased with both AMG and HBO+AMG treatment. Histological ratio of no ossification and osteonecrosis was 37.5%, 43.7%, 18.7% and 6.2% of control, HBO, HBO+AMG and AMG groups respectively with only significant difference observed between HBO and AMG treatment (P<0.01). High concentration of iNOS was observed in the region of osteonecrosis while there was no evidence of eNOS activity around that region. In comparison with the control group, the ratio of osteocyte apoptosis significantly reduced in AMG treatment (P<0.005). We also observed significantly fewer apoptotic osteocytes in AMG group comparing with HBO treatment (P<0.05). Conclusion: None of our treatments prevents osteonecrosis at the histological or micro CT scan level. High concentration of iNOS in the region of osteonecrosis and significant reduction of osteocyte apoptosis with AMG treatment were supportive of iNOS modulating osteocyte apoptosis in SHRs.
Resumo:
In this study, we have demonstrated that the preproghrelin derived hormones, ghrelin and obestatin, may play a role in ovarian cancer. Ghrelin and obestatin stimulated an increase in cell migration in ovarian cancer cell lines and may play a role in cancer progression. Ovarian cancer is the leading cause of death among gynaecological cancers and is the sixth most common cause of cancer-related deaths in women in developed countries. As ovarian cancer is difficult to diagnose at a low tumour grade, two thirds of ovarian cancers are not diagnosed until the late stages of cancer development resulting in a poor prognosis for the patient. As a result, current treatment methods are limited and not ideal. There is an urgent need for improved diagnostic markers, as well better therapeutic approaches and adjunctive therapies for this disease. Ghrelin has a number of important physiological effects, including roles in appetite regulation and the stimulation of growth hormone release. It is also involved in regulating the immune, cardiovascular and reproductive systems and regulates sleep, memory and anxiety, and energy metabolism. Over the last decade, the ghrelin axis, (which includes the hormones ghrelin and obestatin and their receptors), has been implicated in the pathogenesis of many human diseases and it may t may also play an important role in the development of cancer. Ghrelin is a 28 amino acid peptide hormone that exists in two forms. Acyl ghrelin (usually referred to as ghrelin), has a unique n-octanoic acid post-translational modification (which is catalysed by ghrelin O-acyltransferase, GOAT), and desacyl ghrelin, which is a non-octanoylated form. Octanoylated ghrelin acts through the growth hormone secretagogue receptor type 1a (GHSR1a). GHSR1b, an alternatively spliced isoform of GHSR, is C-terminally truncated and does not bind ghrelin. Ghrelin has been implicated in the pathophysiology of a number of diseases Obestatin is a 23 amino acid, C-terminally amidated peptide which is derived from preproghrelin. Although GPR39 was originally thought to be the obestatin receptor this has been disproven, and its receptor remains unknown. Obestatin may have as diverse range of roles as ghrelin. Obestatin improves memory, inhibits thirst and anxiety, increases pancreatic juice secretion and has cardioprotective effects. Obestatin also has been shown to regulate cell proliferation, differentiation and apoptosis in some cell types. Prior to this study, little was known regarding the functions and mechanisms of action ghrelin and obestatin in ovarian cancer. In this study it was demonstrated that the full length ghrelin, GHSR1b and GOAT mRNA transcripts were expressed in all of the ovarian-derived cell lines examined (SKOV3, OV-MZ-6 and hOSE 17.1), however, these cell lines did not express GHSR1a. Ovarian cancer tissue of varying stages and normal ovarian tissue expressed the coding region for ghrelin, obestatin, and GOAT, but not GHSR1a, or GHSR1b. No correlations between cancer grade and the level of expression of these transcripts were observed. This study demonstrated for the first time that both ghrelin and obestatin increase cell migration in ovarian cancer cell lines. Treatment with ghrelin (for 72 hours) significantly increased cell migration in the SKOV3 and OV-MZ-6 ovarian cancer cell lines. Ghrelin (100 nM) stimulated cell migration in the SKOV3 (2.64 +/- 1.08 fold, p <0.05) and OV-MZ-6 (1.65 +/- 0.31 fold, p <0.05) ovarian cancer cell lines, but not in the representative normal cell line hOSE 17.1. This increase in migration was not accompanied by an increase in cell invasion through Matrigel. In contrast to other cancer types, ghrelin had no effect on proliferation. Ghrelin treatment (10nM) significantly decreased attachment of the SKOV3 ovarian cancer cell line to collagen IV (24.7 +/- 10.0 %, p <0.05), however, there were no changes in attachment to the other extracellular matrix molecules (ECM) tested (fibronectin, vitronectin and collagen I), and there were no changes in attachment to any of the ECM molecules in the OV-MZ-6 or hOSE 17.1 cell lines. It is, therefore, unclear if ghrelin plays a role in cell attachment in ovarian cancer. As ghrelin has previously been demonstrated to signal through the ERK1/2 pathway in cancer, we investigated ERK1/2 signalling in ovarian cancer cell lines. In the SKOV3 ovarian cancer cell line, a reduction in ERK1/2 phosphorylation (0.58 fold +/- 0.23, p <0.05) in response to 100 nM ghrelin treatment was observed, while no significant change in ERK1/2 signalling was seen in the OV-MZ-6 cell line with treatment. This suggests that this pathway is unlikely to be involved in mediating the increased migration seen in the ovarian cancer cell lines with ghrelin treatment. In this study ovarian cancer tissue of varying stages and normal ovarian tissue expressed the coding region for obestatin, however, no correlation between cancer grade and level of obestatin transcript expression was observed. In the ovarian-derived cell lines studied (SKOV3, OV-MZ-6 and hOSE 17.1) it was demonstrated that the full length preproghrelin mRNA transcripts were expressed in all cell lines, suggesting they have the ability to produce mature obestatin. This is the first study to demonstrate that obestatin stimulates cell migration and cell invasion. Obestatin induced a significant increase in migration in the SKOV3 ovarian cancer cell line with 10 nM (2.80 +/- 0.52 fold, p <0.05) and 100 nM treatments (3.12 +/- 0.68 fold, p <0.05) and in the OV-MZ-6 cancer cell line with 10 nM (2.04 +/- 0.10 fold, p <0.01) and 100 nM treatments (2.00 +/- 0.37 fold, p <0.05). Obestatin treatment did no affect cell migration in the hOSE 17.1normal ovarian epithelial cell line. Obestatin treatment (100 nM) also stimulated a significant increase in cell invasion in the OV-MZ-6 ovarian cancer cell line (1.45 fold +/- 0.13, p <0.05) and in the hOSE17.1 normal ovarian cell line cells (1.40 fold +/- 0.04 and 1.55 fold +/- 0.05 respectively, p <0.01) with 10 nM and 100 nM treatments. Obestatin treatment did not stimulate cell invasion in the SKOV3 ovarian cancer cell line. This lack of obestatin-stimulated invasion in the SKOV3 cell line may be a cell line specific result. In this study, obestatin did not stimulate cell proliferation in the ovarian cell lines and it has previously been shown to have no effect on cell proliferation in the BON-1 pancreatic neuroendocrine and GC rat somatotroph tumour cell lines. In contrast, obestatin has been shown to affect cell proliferation in gastric and thyroid cancer cell lines, and in some normal cell lines. Obestatin also had no effect on attachment of any of the cell lines to any of the ECM components tested (fibronectin, vitronectin, collagen I and collagen IV). The mechanism of action of obestatin was investigated further using a two dimensional-difference in gel electrophoresis (2D-DIGE) proteomic approach. After treatment with obestating (0, 10 and 100 nM), SKOV3 ovarian cancer and hOSE 17.1 normal ovarian cell lines were collected and 2D-DIGE analysis and mass spectrometry were performed to identify proteins that were differentially expressed in response to treatment. Twenty-six differentially expressed proteins were identified and analysed using Ingenuity Pathway Analysis (IPA). This linked 16 of these proteins in a network. The analysis suggested that the ERK1/2 MAPK pathway was a major mediator of obestatin action. ERK1/2 has previously been shown to be associated with obestatin-stimulated cell proliferation and with the anti-apoptotic effects of obestatin. Activation of the ERK1/2 signalling pathway by obestatin was, therefore, investigated in the SKOV3 and OV-MZ-6 ovarian cancer cell lines using anti-active antibodies and Western immunoblots. Obestatin treatment significantly decreased ERK1/2 phosphorylation at higher obestatin concentrations in both the SKOV3 (100 nM and 1000 nM) and OV-MZ-6 (1000 nM) cell lines compared to the untreated controls. Currently, very little is known about obestatin signalling in cancer. This thesis has demonstrated for the first time that the ghrelin axis may play a role in ovarian cancer migration. Ghrelin and obestatin increased cell migration in ovarian cancer cell lines, indicating that they may be a useful target for therapies that reduce ovarian cancer progression. Further studies investigating the role of the ghrelin axis using in vivo ovarian cancer metastasis models are warranted.