294 resultados para Hybrid Automatic Retransmission
Resumo:
It is commonplace to use digital video cameras in robotic applications. These cameras have built-in exposure control but they do not have any knowledge of the environment, the lens being used, the important areas of the image and do not always produce optimal image exposure. Therefore, it is desirable and often necessary to control the exposure off the camera. In this paper we present a scheme for exposure control which enables the user application to determine the area of interest. The proposed scheme introduces an intermediate transparent layer between the camera and the user application which combines the information from these for optimal exposure production. We present results from indoor and outdoor scenarios using directional and fish-eye lenses showing the performance and advantages of this framework.
Resumo:
It’s commonly assumed that psychiatric violence is motivated by delusions, but here the concept of a reversed impetus is explored, to understand whether delusions are formed as ad-hoc or post-hoc rationalizations of behaviour or in advance of the actus reus. The reflexive violence model proposes that perceptual stimuli has motivational power and this may trigger unwanted actions and hallucinations. The model is based on the theory of ecological perception, where opportunities enabled by an object are cues to act. As an apple triggers a desire to eat, a gun triggers a desire to shoot. These affordances (as they are called) are part of the perceptual apparatus, they allow the direct recognition of objects – and in emergencies they enable the fastest possible reactions. Even under normal circumstances, the presence of a weapon will trigger inhibited violent impulses. The presence of a victim will also, but under normal circumstances, these affordances don’t become violent because negative action impulses are totally inhibited, whereas in psychotic illness, negative action impulses are treated as emergencies and bypass frontal inhibitory circuits. What would have been object recognition becomes a blind automatic action. A range of mental illnesses can cause inhibition to be bypassed. At its most innocuous, this causes both simple hallucinations (where the motivational power of an object is misattributed). But ecological perception may have the power to trigger serious violence also –a kind that’s devoid of motives or planning and is often shrouded in amnesia or post-rational delusions.
Resumo:
Heavy metal pollution of sediments is a growing concern in most parts of the world, and numerous studies focussed on identifying contaminated sediments by using a range of digestion methods and pollution indices to estimate sediment contamination have been described in the literature. The current work provides a critical review of the more commonly used sediment digestion methods and identifies that weak acid digestion is more likely to provide guidance on elements that are likely to be bioavailable than other traditional methods of digestion. This work also reviews common pollution indices and identifies the Nemerow Pollution Index as the most appropriate method for establishing overall sediment quality. Consequently, a modified Pollution Index that can lead to a more reliable understanding of whole sediment quality is proposed. This modified pollution index is then tested against a number of existing studies and demonstrated to give a reliable and rapid estimate of sediment contamination and quality.
Resumo:
Affect is an important feature of multimedia content and conveys valuable information for multimedia indexing and retrieval. Most existing studies for affective content analysis are limited to low-level features or mid-level representations, and are generally criticized for their incapacity to address the gap between low-level features and high-level human affective perception. The facial expressions of subjects in images carry important semantic information that can substantially influence human affective perception, but have been seldom investigated for affective classification of facial images towards practical applications. This paper presents an automatic image emotion detector (IED) for affective classification of practical (or non-laboratory) data using facial expressions, where a lot of “real-world” challenges are present, including pose, illumination, and size variations etc. The proposed method is novel, with its framework designed specifically to overcome these challenges using multi-view versions of face and fiducial point detectors, and a combination of point-based texture and geometry. Performance comparisons of several key parameters of relevant algorithms are conducted to explore the optimum parameters for high accuracy and fast computation speed. A comprehensive set of experiments with existing and new datasets, shows that the method is effective despite pose variations, fast, and appropriate for large-scale data, and as accurate as the method with state-of-the-art performance on laboratory-based data. The proposed method was also applied to affective classification of images from the British Broadcast Corporation (BBC) in a task typical for a practical application providing some valuable insights.
Resumo:
Robustness to variations in environmental conditions and camera viewpoint is essential for long-term place recognition, navigation and SLAM. Existing systems typically solve either of these problems, but invariance to both remains a challenge. This paper presents a training-free approach to lateral viewpoint- and condition-invariant, vision-based place recognition. Our successive frame patch-tracking technique infers average scene depth along traverses and automatically rescales views of the same place at different depths to increase their similarity. We combine our system with the condition-invariant SMART algorithm and demonstrate place recognition between day and night, across entire 4-lane-plus-median-strip roads, where current algorithms fail.
Resumo:
Over the past decades, universities have increasingly become ambidextrous organizations reconciling scientific and commercial missions. In order to manage this ambidexterity, technology transfer offices (TTOs) were established in most universities. This paper studies a specific, often implemented, but rather understudied type of TTO, namely a hybrid TTO model uniting centralized and decentralized levels. Employing a qualitative research design, we examine how and why the two TTO levels engage in diverse boundary spanning activities to help nascent spin-off companies move through the pre-spin-off process. Our research identifies differences in the types of boundary spanning activities that centralized and decentralized TTOs perform and in the parties they engage with. We find geographical, technological and organizational proximity to be important antecedents of the TTOs’ engagement in external and internal boundary spanning activities. These results have important implications for both academics and practitioners interested in university technology transfer through spin-off creation.
Resumo:
Particle swarm optimization (PSO), a new population based algorithm, has recently been used on multi-robot systems. Although this algorithm is applied to solve many optimization problems as well as multi-robot systems, it has some drawbacks when it is applied on multi-robot search systems to find a target in a search space containing big static obstacles. One of these defects is premature convergence. This means that one of the properties of basic PSO is that when particles are spread in a search space, as time increases they tend to converge in a small area. This shortcoming is also evident on a multi-robot search system, particularly when there are big static obstacles in the search space that prevent the robots from finding the target easily; therefore, as time increases, based on this property they converge to a small area that may not contain the target and become entrapped in that area.Another shortcoming is that basic PSO cannot guarantee the global convergence of the algorithm. In other words, initially particles explore different areas, but in some cases they are not good at exploiting promising areas, which will increase the search time.This study proposes a method based on the particle swarm optimization (PSO) technique on a multi-robot system to find a target in a search space containing big static obstacles. This method is not only able to overcome the premature convergence problem but also establishes an efficient balance between exploration and exploitation and guarantees global convergence, reducing the search time by combining with a local search method, such as A-star.To validate the effectiveness and usefulness of algorithms,a simulation environment has been developed for conducting simulation-based experiments in different scenarios and for reporting experimental results. These experimental results have demonstrated that the proposed method is able to overcome the premature convergence problem and guarantee global convergence.
Resumo:
Semantic priming occurs when a subject is faster in recognising a target word when it is preceded by a related word compared to an unrelated word. The effect is attributed to automatic or controlled processing mechanisms elicited by short or long interstimulus intervals (ISIs) between primes and targets. We employed event-related functional magnetic resonance imaging (fMRI) to investigate blood oxygen level dependent (BOLD) responses associated with automatic semantic priming using an experimental design identical to that used in standard behavioural priming tasks. Prime-target semantic strength was manipulated by using lexical ambiguity primes (e.g., bank) and target words related to dominant or subordinate meaning of the ambiguity. Subjects made speeded lexical decisions (word/nonword) on dominant related, subordinate related, and unrelated word pairs presented randomly with a short ISI. The major finding was a pattern of reduced activity in middle temporal and inferior prefrontal regions for dominant versus unrelated and subordinate versus unrelated comparisons, respectively. These findings are consistent with both a dual process model of semantic priming and recent repetition priming data that suggest that reductions in BOLD responses represent neural priming associated with automatic semantic activation and implicate the left middle temporal cortex and inferior prefrontal cortex in more automatic aspects of semantic processing.
Resumo:
To understand factors that affect brain connectivity and integrity, it is beneficial to automatically cluster white matter (WM) fibers into anatomically recognizable tracts. Whole brain tractography, based on diffusion-weighted MRI, generates vast sets of fibers throughout the brain; clustering them into consistent and recognizable bundles can be difficult as there are wide individual variations in the trajectory and shape of WM pathways. Here we introduce a novel automated tract clustering algorithm based on label fusion - a concept from traditional intensity-based segmentation. Streamline tractography generates many incorrect fibers, so our top-down approach extracts tracts consistent with known anatomy, by mapping multiple hand-labeled atlases into a new dataset. We fuse clustering results from different atlases, using a mean distance fusion scheme. We reliably extracted the major tracts from 105-gradient high angular resolution diffusion images (HARDI) of 198 young normal twins. To compute population statistics, we use a pointwise correspondence method to match, compare, and average WM tracts across subjects. We illustrate our method in a genetic study of white matter tract heritability in twins.
Resumo:
Automatic labeling of white matter fibres in diffusion-weighted brain MRI is vital for comparing brain integrity and connectivity across populations, but is challenging. Whole brain tractography generates a vast set of fibres throughout the brain, but it is hard to cluster them into anatomically meaningful tracts, due to wide individual variations in the trajectory and shape of white matter pathways. We propose a novel automatic tract labeling algorithm that fuses information from tractography and multiple hand-labeled fibre tract atlases. As streamline tractography can generate a large number of false positive fibres, we developed a top-down approach to extract tracts consistent with known anatomy, based on a distance metric to multiple hand-labeled atlases. Clustering results from different atlases were fused, using a multi-stage fusion scheme. Our "label fusion" method reliably extracted the major tracts from 105-gradient HARDI scans of 100 young normal adults. © 2012 Springer-Verlag.
Resumo:
We introduce a framework for population analysis of white matter tracts based on diffusion-weighted images of the brain. The framework enables extraction of fibers from high angular resolution diffusion images (HARDI); clustering of the fibers based partly on prior knowledge from an atlas; representation of the fiber bundles compactly using a path following points of highest density (maximum density path; MDP); and registration of these paths together using geodesic curve matching to find local correspondences across a population. We demonstrate our method on 4-Tesla HARDI scans from 565 young adults to compute localized statistics across 50 white matter tracts based on fractional anisotropy (FA). Experimental results show increased sensitivity in the determination of genetic influences on principal fiber tracts compared to the tract-based spatial statistics (TBSS) method. Our results show that the MDP representation reveals important parts of the white matter structure and considerably reduces the dimensionality over comparable fiber matching approaches.
Resumo:
Efficient and accurate geometric and material nonlinear analysis of the structures under ultimate loads is a backbone to the success of integrated analysis and design, performance-based design approach and progressive collapse analysis. This paper presents the advanced computational technique of a higher-order element formulation with the refined plastic hinge approach which can evaluate the concrete and steel-concrete structure prone to the nonlinear material effects (i.e. gradual yielding, full plasticity, strain-hardening effect when subjected to the interaction between axial and bending actions, and load redistribution) as well as the nonlinear geometric effects (i.e. second-order P-d effect and P-D effect, its associate strength and stiffness degradation). Further, this paper also presents the cross-section analysis useful to formulate the refined plastic hinge approach.
Resumo:
As critical infrastructure such as transportation hubs continue to grow in complexity, greater importance is placed on monitoring these facilities to ensure their secure and efficient operation. In order to achieve these goals, technology continues to evolve in response to the needs of various infrastructure. To date, however, the focus of technology for surveillance has been primarily concerned with security, and little attention has been placed on assisting operations and monitoring performance in real-time. Consequently, solutions have emerged to provide real-time measurements of queues and crowding in spaces, but have been installed as system add-ons (rather than making better use of existing infrastructure), resulting in expensive infrastructure outlay for the owner/operator, and an overload of surveillance systems which in itself creates further complexity. Given many critical infrastructure already have camera networks installed, it is much more desirable to better utilise these networks to address operational monitoring as well as security needs. Recently, a growing number of approaches have been proposed to monitor operational aspects such as pedestrian throughput, crowd size and dwell times. In this paper, we explore how these techniques relate to and complement the more commonly seen security analytics, and demonstrate the value that can be added by operational analytics by demonstrating their performance on airport surveillance data. We explore how multiple analytics and systems can be combined to better leverage the large amount of data that is available, and we discuss the applicability and resulting benefits of the proposed framework for the ongoing operation of airports and airport networks.
Resumo:
Purpose Traditional construction planning relies upon the critical path method (CPM) and bar charts. Both of these methods suffer from visualization and timing issues that could be addressed by 4D technology specifically geared to meet the needs of the construction industry. This paper proposed a new construction planning approach based on simulation by using a game engine. Design/methodology/approach A 4D automatic simulation tool was developed and a case study was carried out. The proposed tool was used to simulate and optimize the plans for the installation of a temporary platform for piling in a civil construction project in Hong Kong. The tool simulated the result of the construction process with three variables: 1) equipment, 2) site layout and 3) schedule. Through this, the construction team was able to repeatedly simulate a range of options. Findings The results indicate that the proposed approach can provide a user-friendly 4D simulation platform for the construction industry. The simulation can also identify the solution being sought by the construction team. The paper also identifies directions for further development of the 4D technology as an aid in construction planning and decision-making. Research limitations/implications The tests on the tool are limited to a single case study and further research is needed to test the use of game engines for construction planning in different construction projects to verify its effectiveness. Future research could also explore the use of alternative game engines and compare their performance and results. Originality/value The authors proposed the use of game engine to simulate the construction process based on resources, working space and construction schedule. The developed tool can be used by end-users without simulation experience.
Resumo:
INTRODUCTION There is a large range in the reported prevalence of end plate lesions (EPLs), sometimes referred to as Schmorl's nodes in the general population (3.8-76%). One possible reason for this large range is the differences in definitions used by authors. Previous research has suggested that EPLs may potentially be a primary disturbance of growth plates that leads to the onset of scoliosis. The aim of this study was to develop a technique to measure the size, prevalence and location of EPLs on Computed Tomography (CT) images of scoliosis patients in a consistent manner. METHODS A detection algorithm was developed and applied to measure EPLs for five adolescent females with idiopathic scoliosis (average age 15.1 years, average major Cobb 60°). In this algorithm, the EPL definition was based on the lesion depth, the distance from the edge of the vertebral body and the gradient of the lesion edge. Existing low-dose, CT scans of the patients' spines were segmented semi-automatically to extract 3D vertebral endplate morphology. Manual sectioning of any attachments between posterior elements of adjacent vertebrae and, if necessary, endplates was carried out before the automatic algorithm was used to determine the presence and position of EPLs. RESULTS EPLs were identified in 15 of the 170 (8.8%) endplates analysed with an average depth of 3.1mm. 73% of the EPLs were seen in the lumbar spines (11/15). A sensitivity study demonstrated that the algorithm was most sensitive to changes in the minimum gradient required at the lesion edge. CONCLUSION An imaging analysis technique for consistent measurement of the prevalence, location and size of EPLs on CT images has been developed. Although the technique was tested on scoliosis patients, it can be used to analyse other populations without observer errors in EPL definitions.