301 resultados para Hidrotermal synthesis
Resumo:
The monoanionic ligand 1,1,3,3 tetracyano-2 ethoxypropenide (tcnoet) is reported with its Cu(II)–bpy complex of formula [Cu2(µ-tcnoet)2(tcnoet)2(bpy)2]. The structure has been determined using X-ray diffraction and features an alternating chain with bridging tcnoet ligands. One ligand acts as a bidentate, dinucleating ligand with one short Cu–N and one medium Cu–N bond, whereas the other tcnoet is largely monodentate, albeit with a very weak interdimer Cu–N bond. Despite the arrangement in dinuclear units, further arranged into linear chains through the non-bridging tcnoet ligand, the compound shows no significant magnetic exchange, as deduced from magnetic susceptibility down to 4 K. Ligand-field, IR and EPR spectra in the solid state and in frozen solution are reported and are consistent with the overall structure.
Resumo:
The fungal metabolite 3-chloro-4-hydroxyphenylacetic acid (1) was utilized in the generation of a unique drug-like screening library using parallel solution-phase synthesis. A 20-membered amide library (3–22) was generated by first converting 1 to methyl (3-chloro-4-hydroxyphenyl)acetate (2), then reacting this scaffold with a diverse series of primary amines via a solvent-free aminolysis procedure. The structures of the synthetic analogues (3–22) were elucidated by spectroscopic data analysis. The structures of compounds 8, 12, and 22 were confirmed by single X-ray crystallographic analysis. All compounds were evaluated for cytotoxicity against a human prostate cancer cell line (LNCaP) and for antiparasitic activity toward Trypanosoma brucei brucei and Plasmodium falciparum and showed no significant activity at 10 μM. The library was also tested for effects on the lipid content of LNCaP and PC-3 prostate cancer cells, and it was demonstrated that the fluorobenzyl analogues (12–14) significantly reduced cellular phospholipid and neutral lipid levels.
Resumo:
The synthesis of organoclays (OC) by intercalation of quaternary ammonium cation (QAC) into expanding clay minerals, notably montmorillonite (Mt), has attracted a great deal of attention during the past two decades. The OC have also found applications in the manufacture of clay polymer nanocomposites (CPN) and environmental remediation. Despite the wealth of information that exists on the formation and properties of OC, some problems remain to be resolved. The present contribution is an attempt at clarifying two outstanding issues, based on the literature and experimental data obtained by the authors over the past years. The first issue concerns the relationship between the cation exchange capacity (CEC) of the Mt and the basal spacing of the OC which, in turn, is dependent on the concentration and the nature of the added QAC. At a concentration less than 1 CEC, organo-Mt (OMt) formed using the QAC with a short alkyl chain length with nc < 16 (e.g., dodecyl trimethylammonium) gives basal spacings of 1.4–1.6 nm that are essentially independent of the CEC. However, for long-chain QAC with nc ≥ 16 (e.g., hexadecyl trimethylammonium), the basal spacing varies with the QAC concentration. For Mt with a CEC of 80–90 meq/100 g, the basal spacing of the OC increases gradually with the CEC and shows a sudden (stepwise) increase to 3.2–3.8 nm at a QAC concentration of 1.5 CEC and to 3.5–4.0 nm at a concentration of 2.0 CEC. The second issue pertains to the “locking” effect in QAC- and silane-modified pillared interlayered clays (PILC) and Mt. For silylated Mt, the “locking” effect results from the covalent bonding of silane to two adjacent layers within a single clay mineral particle. The same mechanism can operate in silane-grafted PILC but in this case, the “locking” effect may primarily be ascribed to the pillaring of adjacent basal surfaces by metal hydr(oxides).
Resumo:
Mismatches between services needing to interoperate have been addressed through the adaptation of structural and behavioural interfaces of services, which in practice incur long lead time through manual, coding effort. We propose a framework, complementary to con- ventional service adaptation, to synthesise service interfaces in the open setting of business networks, allowing consumers to introspect service interfaces and formulate service invocations. The framework also allows evolved service requests, as new features of service capabilities are discov- ered, through interactions with other, similar services. Finally the frame- work fosters reuse of adaptation efforts through normalisation of struc- tural and behavioural interfaces of similar services. This paper provides a first exposition of the service interface synthesis framework, describing patterns containing novel requirements for unilateral service adaptation and detailing the interface synthesis technique. Complex examples of ser- vices drawn from commercial logistic systems are then used to validate the synthesis technique and identify open challenges and future research directions.
Resumo:
This project was a step forward in developing new recyclable photocatalysts for chemical reactions. These new photocatalysts can facilitate reactions by using visible light under moderate reaction conditions which is suitable for a sustainable, green and eco-friendly modern chemical industry. The outcome of the study greatly extended our understanding in metal nanoparticle photocatalysis, which reveals new photocatalytic mechanisms for the controlled transformation of chemical reactions. The prospect of sunlight irradiation driving chemical reactions may provide opportunity for the organic synthesis via a more controlled, simplified, and greener process in the future.
Resumo:
The world is facing an energy crisis due to exponential population growth and limited availability of fossil fuels. Carbon, one of the most abundant materials found on earth, and its allotrope forms have been proposed in this project for novel energy generation and storage devices. This studied investigated the synthesis and properties of these carbon nanomaterials for applications in organic solar cells and supercapacitors.
Resumo:
Graphene has emerged as one of the most exciting materials of the 21st century due to its unique properties which have demonstrated great potential for applications in energy storage, flexible electronics and multifunctional composites. This thesis has established a new technique for investigating the structure-property relationship of graphene-polymer nanocomposites at micro and nanoscales. The outcomes can help gain a fundamental understanding of the toughening mechanism in these novel nanocomposites and benefit the development of broad graphene based materials and devices.
Phase-selective hydrothermal synthesis of Cu2ZnSnS4nanocrystals: The effect of the sulphur precursor
Resumo:
High quality Cu2ZnSnS4 (CZTS) films with uniform thickness and smooth surface were prepared using nanocrystals synthesized by a one-step hydrothermal method. It is found that the nature of the sulphur precursor used in the hydrothermal reaction influences both the compositional purity and the crystal structure of the synthesized hydrothermal product significantly. The CZTS material consisting of both wurtzite and kesterite crystal structures was obtained when using an organic sulfur precursor such as thioacetamide and thiourea in the precursor solution of the hydrothermal reaction while the pure kesterite phase CZTS nanocrystals were made when Na2S was employed as the sulphur precursor. CZTS thin films deposited on a Mo–soda lime glass substrate with uniform thickness (1.7 μm) were made by a simple doctor-blading method. The investigation of the effect of thermal treatment on the film has indicated that the wurtzite CZTS material was completely transformed to the kesterite phase when the material was annealed at 550 °C. Large grains (around 2 μm in size) were found on the surface of the CZTS film which was annealed at 600 °C. The evaluation of the photoresponse of the CZTS thin films has showed that a higher and very stable photocurrent was generated by the film annealed at 600 °C compared to the film annealed at 550 °C.
Resumo:
The present work demonstrates a systematic approach for the synthesis of pure kesterite-phase Cu2ZnSnS4 (CZTS) nanocrystals with a uniform size distribution by a one-step, thioglycolic acid (TGA)-assisted hydrothermal route. The formation mechanism and the role of TGA in the formation of CZTS compound were thoroughly studied. It has been found that TGA interacted with Cu2+ to form Cu+ at the initial reaction stage and controlled the crystal-growth of CZTS nanocrystals during the hydrothermal reaction. The consequence of the reduction of Cu2+ to Cu+ led to the formation Cu2−xS nuclei, which acted as the crystal framework for the formation of CZTS compound. CZTS was formed by the diffusion of Zn2+ and Sn4+ cations to the lattice of Cu2−xS during the hydrothermal reaction. The as-synthesized CZTS nanocrystals exhibited strong light absorption over the range of wavelength beyond 1000 nm. The band gap of the material was determined to be 1.51 eV, which is optimal for application in photoelectric energy conversion device.
Resumo:
Pure phase Cu2ZnSnS4 (CZTS) nanoparticles were successfully synthesized via polyacrylic acid (PAA) assisted one-pot hydrothermal route. The morphology, crystal structure, composition and optical properties as well as the photoactivity of the as-synthesized CZTS nanoparticles were characterized by X-ray diffraction, Raman spectroscopy, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectrometer, UV-visible absorption spectroscopy and photoelectrochemical measurement. The influence of various synthetic conditions, such as the reaction temperature, reaction duration and the amount of PAA in the precursor solution on the formation of CZTS compound was systematically investigated. The results have shown that the crystal phase, morphology and particle size of CZTS can be tailored by controlling the reaction conditions. The formation mechanism of CZTS in the hydrothermal reaction has been proposed based on the investigation of time-dependent phase evolution of CZTS which showed that metal sulfides (e.g., Cu2S, SnS2 and ZnS) were formed firstly during the hydrothermal reaction before forming CZTS compound through nucleation. The band gap of the as-synthesized CZTS nanoparticles is 1.49 eV. The thin film electrode based on the synthesized CZTS nanoparticles in a three-electrode photoelectrochemical cell generated pronounced photocurrent under illumination provided by a red light-emitting diode (LED, 627 nm), indicating the photoactivity of the semiconductor material.
Resumo:
Mitigating the environmental effects of global population growth, climatic change and increasing socio-ecological complexity is a daunting challenge. To tackle this requires synthesis: the integration of disparate information to generate novel insights from heterogeneous, complex situations where there are diverse perspectives. Since 1995, a structured approach to inter-, multi- and trans-disciplinary1 collaboration around big science questions has been supported through synthesis centres around the world. These centres are finding an expanding role due to ever-accumulating data and the need for more and better opportunities to develop transdisciplinary and holistic approaches to solve real-world problems. The Australian Centre for Ecological Analysis and Synthesis (ACEAS
Resumo:
Grass pollen is a major trigger for allergic rhinitis and asthma, yet little is known about the timing and levels of human exposure to airborne grass pollen across Australasian urban environments. The relationships between environmental aeroallergen exposure and allergic respiratory disease bridge the fields of ecology, aerobiology, geospatial science and public health. The Australian Aerobiology Working Group comprised of experts in botany, palynology, biogeography, climate change science, plant genetics, biostatistics, ecology, pollen allergy, public and environmental health, and medicine, was established to systematically source, collate and analyse atmospheric pollen concentration data from 11 Australian and six New Zealand sites. Following two week-long workshops, post-workshop evaluations were conducted to reflect upon the utility of this analysis and synthesis approach to address complex multidisciplinary questions. This Working Group described i) a biogeographically dependent variation in airborne pollen diversity, ii) a latitudinal gradient in the timing, duration and number of peaks of the grass pollen season, and iii) the emergence of new methodologies based on trans-disciplinary synthesis of aerobiology and remote sensing data. Challenges included resolving methodological variations between pollen monitoring sites and temporal variations in pollen datasets. Other challenges included “marrying” ecosystem and health sciences and reconciling divergent expert opinion. The Australian Aerobiology Working Group facilitated knowledge transfer between diverse scientific disciplines, mentored students and early career scientists, and provided an uninterrupted collaborative opportunity to focus on a unifying problem globally. The Working Group provided a platform to optimise the value of large existing ecological datasets that have importance for human respiratory health and ecosystems research. Compilation of current knowledge of Australasian pollen aerobiology is a critical first step towards the management of exposure to pollen in patients with allergic disease and provides a basis from which the future impacts of climate change on pollen distribution can be assessed and monitored.
Resumo:
Directional synthesis of SnO2@graphene nanocomposites via a one-step, low-cost, and up-scalable wetmechanochemical method is achieved using graphene oxide and SnCl2 as precursors. The graphene oxides are reduced to graphene while the SnCl2 is oxidized to SnO2 nanoparticles that are in situ anchored onto the graphene sheets evenly and densely, resulting in uniform SnO2@graphene nanocomposites. The prepared nanocomposites possess excellent electrochemical performance and outstanding cycling in Li-ion batteries.
Resumo:
Three fullerene isoindoline nitroxides N-methyl-3,4-fulleropyrrolidine-2-spiro-5′- (1′,1′,3′,3′-tetramethylisoindolin-2′-yloxyl), (C60-(TMIO)m, and C70-(TMIO)n) were synthesized by the covalent bonding of 5-formyl-1,1,3,3-tetramethyl isoindolin-2-yloxyl to the fullerenes C60 and C70. Significantly, the X-ray photoelectron spectra indicated the characteristic N 1s signals of NO. at 402 eV. The atomic force microscope morphologies showed that the average particle sizes of C60-(TMIO)m and C70-(TMIO)n were 38 and 15 nm. The electrochemical experiments indicated that fullerene bound isoindoline nitroxides retained similar electrochemical properties and redox reaction mechanisms as the parent nitroxides. The electron paramagnetic resonance spectra of the fullerene isoindoline nitroxides all exhibited the hyperfine splittings and characteristic spectra of tetramethyl isoindoline nitroxides, with typical nitroxide g-values and nitrogen isotropic hyperfine coupling constants. Therefore, these fullerene isoindoline nitroxides may be considered as potential candidates for novel biological spin probes using electron paramagnetic resonance spectroscopy.
Resumo:
Two new star-burst compounds based on 1,3,5-triazine core and carbazole end-capped phenylene ethynylene arms (1a and 1b) were synthesized and characterized. Their photophysical properties were investigated systematically via spectroscopic and theoretical methods. Both compounds exhibit strong 1π–π⁎ transitions in the UV region and intense 1π–π⁎/intramolecular charge transfer (1ICT) absorption bands in the UV–vis region. Introducing the carbazole end-capped phenylene ethynylene arm on the 1,3,5-triazine core causes a slight bathochromic shift and enhanced molar extinction coefficient of the 1π–π⁎/1ICT transition band. Both compounds are emissive in solution at room temperature and 77 K, which exhibit pronounced positive solvatochromic effect. The emitting state could be ascribed to 1ICT state in more polar solvent, and 1π–π⁎ state in low-polarity solvent. The high emission quantum yields (Φem=0.90~1.0) of 1a and 1b (in hexane and toluene) make them potential candidates as efficient light-emitting materials. The spectroscopic studies and theoretical calculations indicate that the photophysical properties of these compounds can be tuned by the carbazole end-capped phenylene ethynylene arm, which would also be useful for rational design of photofunctional materials.