312 resultados para Hand gesture recognition
Resumo:
Introduction: Interventions that prevent healthcare-associated infections should lead to fewer deaths and shorter hospital stays. Cleaning hands with soap and water or alcohol rub is an effectiveway to prevent the transmission of organisms, but compliance is sometimes low. The National Hand Hygiene Initiative in Australia aimed to improve hand hygiene compliance among healthcare workers, with the goal of reducing rates of healthcare-associated infections. Methods: We examined if the introduction of the National Hand Hygiene Initiative was associated with a change in infection rates. Monthly infection rates for six types of healthcare-associated infections were examined in 38 Australian hospitals across six states. Infection categories were: bloodstream infections, centralline associated bloodstream infections, methicillin-resistant and methicillin-sensitive Staphylococcus aureus, Staphylococcus aureus bacteraemia and surgical site infections. Results: The National Hand Hygiene Initiative was associated with a statistically significant reduction in infection rates in 11 out of 23 state and infection combinations studied. There was no change in infection rates for nine combinations, and there was an increase in three infection rates in South Australia. Conclusions: The intervention was associated with reduced infection rates in many cases. The lack of improvement in nine cases may have been because they already had effective initiatives before the national initiative’s introduction.
Resumo:
This thesis demonstrates that robots can learn about how the world changes, and can use this information to recognise where they are, even when the appearance of the environment has changed a great deal. The ability to localise in highly dynamic environments using vision only is a key tool for achieving long-term, autonomous navigation in unstructured outdoor environments. The proposed learning algorithms are designed to be unsupervised, and can be generated by the robot online in response to its observations of the world, without requiring information from a human operator or other external source.
Resumo:
This paper presents an online, unsupervised training algorithm enabling vision-based place recognition across a wide range of changing environmental conditions such as those caused by weather, seasons, and day-night cycles. The technique applies principal component analysis to distinguish between aspects of a location’s appearance that are condition-dependent and those that are condition-invariant. Removing the dimensions associated with environmental conditions produces condition-invariant images that can be used by appearance-based place recognition methods. This approach has a unique benefit – it requires training images from only one type of environmental condition, unlike existing data-driven methods that require training images with labelled frame correspondences from two or more environmental conditions. The method is applied to two benchmark variable condition datasets. Performance is equivalent or superior to the current state of the art despite the lesser training requirements, and is demonstrated to generalise to previously unseen locations.
Resumo:
Recently Convolutional Neural Networks (CNNs) have been shown to achieve state-of-the-art performance on various classification tasks. In this paper, we present for the first time a place recognition technique based on CNN models, by combining the powerful features learnt by CNNs with a spatial and sequential filter. Applying the system to a 70 km benchmark place recognition dataset we achieve a 75% increase in recall at 100% precision, significantly outperforming all previous state of the art techniques. We also conduct a comprehensive performance comparison of the utility of features from all 21 layers for place recognition, both for the benchmark dataset and for a second dataset with more significant viewpoint changes.
Resumo:
Speech recognition in car environments has been identified as a valuable means for reducing driver distraction when operating noncritical in-car systems. Under such conditions, however, speech recognition accuracy degrades significantly, and techniques such as speech enhancement are required to improve these accuracies. Likelihood-maximizing (LIMA) frameworks optimize speech enhancement algorithms based on recognized state sequences rather than traditional signal-level criteria such as maximizing signal-to-noise ratio. LIMA frameworks typically require calibration utterances to generate optimized enhancement parameters that are used for all subsequent utterances. Under such a scheme, suboptimal recognition performance occurs in noise conditions that are significantly different from that present during the calibration session – a serious problem in rapidly changing noise environments out on the open road. In this chapter, we propose a dialog-based design that allows regular optimization iterations in order to track the ever-changing noise conditions. Experiments using Mel-filterbank noise subtraction (MFNS) are performed to determine the optimization requirements for vehicular environments and show that minimal optimization is required to improve speech recognition, avoid over-optimization, and ultimately assist with semireal-time operation. It is also shown that the proposed design is able to provide improved recognition performance over frameworks incorporating a calibration session only.
Resumo:
Empirical evidence suggests impaired facial emotion recognition in schizophrenia. However, the nature of this deficit is the subject of ongoing research. The current study tested the hypothesis that a generalized deficit at an early stage of face-specific processing (i.e. putatively subserved by the fusiform gyrus) accounts for impaired facial emotion recognition in schizophrenia as opposed to the Negative Emotion-specific Deficit Model, which suggests impaired facial information processing at subsequent stages. Event-related potentials (ERPs) were recorded from 11 schizophrenia patients and 15 matched controls while performing a gender discrimination and a facial emotion recognition task. Significant reduction of the face-specific vertex positive potential (VPP) at a peak latency of 165 ms was confirmed in schizophrenia subjects whereas their early visual processing, as indexed by P1, was found to be intact. Attenuated VPP was found to correlate with subsequent P3 amplitude reduction and to predict accuracy when performing a facial emotion discrimination task. A subset of ten schizophrenia patients and ten matched healthy control subjects also performed similar tasks in the magnetic resonance imaging scanner. Patients showed reduced blood oxygenation level-dependent (BOLD) activation in the fusiform, inferior frontal, middle temporal and middle occipital gyrus as well as in the amygdala. Correlation analyses revealed that VPP and the subsequent P3a ERP components predict fusiform gyrus BOLD activation. These results suggest that problems in facial affect recognition in schizophrenia may represent flow-on effects of a generalized deficit in early visual processing.
Resumo:
Is there a threshold above which hand-rub solution consumption is efficient for decreasing MRSA incidence? [J Hosp Infect. 2009] Association between an index of consumption of hand-rub solution and the incidence of acquired meticillin-resistant Staphylococcus aureus in an intensive care unit.
Resumo:
Neuroimaging research has shown localised brain activation to different facial expressions. This, along with the finding that schizophrenia patients perform poorly in their recognition of negative emotions, has raised the suggestion that patients display an emotion specific impairment. We propose that this asymmetry in performance reflects task difficulty gradations, rather than aberrant processing in neural pathways subserving recognition of specific emotions. A neural network model is presented, which classifies facial expressions on the basis of measurements derived from human faces. After training, the network showed an accuracy pattern closely resembling that of healthy subjects. Lesioning of the network led to an overall decrease in the network’s discriminant capacity, with the greatest accuracy decrease to fear, disgust and anger stimuli. This implies that the differential pattern of impairment in schizophrenia patients can be explained without having to postulate impairment of specific processing modules for negative emotion recognition.
Resumo:
This study has provided further understanding of the pathogenesis of EV71, one of the major etiological agents associated with significant mortality in Hand, Foot and Mouth disease. Elucidating the host-pathogen interaction and the mechanism that the virus uses to bypass host defence systems to establish infection will aid in the development of potential antiviral therapeutics against EV71.
Resumo:
A novel shape recognition algorithm was developed to autonomously classify the Northern Pacific Sea Star (Asterias amurenis) from benthic images that were collected by the Starbug AUV during 6km of transects in the Derwent estuary. Despite the effects of scattering, attenuation, soft focus and motion blur within the underwater images, an optimal joint classification rate of 77.5% and misclassification rate of 13.5% was achieved. The performance of algorithm was largely attributed to its ability to recognise locally deformed sea star shapes that were created during the segmentation of the distorted images.
Resumo:
In this paper we propose a novel approach to multi-action recognition that performs joint segmentation and classification. This approach models each action using a Gaussian mixture using robust low-dimensional action features. Segmentation is achieved by performing classification on overlapping temporal windows, which are then merged to produce the final result. This approach is considerably less complicated than previous methods which use dynamic programming or computationally expensive hidden Markov models (HMMs). Initial experiments on a stitched version of the KTH dataset show that the proposed approach achieves an accuracy of 78.3%, outperforming a recent HMM-based approach which obtained 71.2%.