441 resultados para Geothermal engineering
Resumo:
A series of copolymers of trimethylene carbonate (TMC) and l-lactide (LLA) were synthesized and evaluated as scaffolds for the production of artificial blood vessels. The polymers were end-functionalized with acrylate, cast into films, and cross-linked using UV light. The mechanical, degradation, and biocompatibility properties were evaluated. High TMC polymers showed mechanical properties comparable to human arteries (Young’s moduli of 1.2–1.8 MPa and high elasticity with repeated cycling at 10% strain). Over 84 days degradation in PBS, the modulus and material strength decreased gradually. The polymers were nontoxic and showed good cell adhesion and proliferation over 7 days using human mesenchymal stem cells. When implanted into the rat peritoneal cavity, the polymers elicited formation of tissue capsules composed of myofibroblasts, resembling immature vascular smooth muscle cells. Thus, these polymers showed properties which were tunable and favorable for vascular tissue engineering, specifically, the growth of artificial blood vessels in vivo.
Resumo:
Electrostatic spinning or electrospinning is a fiber spinning technique driven by a high-voltage electric field that produces fibers with diameters in a submicrometer to nanometer range.1 Nanofibers are typical one-dimensional colloidal objects with an increased tensile strength, whose length can achieve a few kilometers and the specific surface area can be 100 m2 g–1 or higher.2 Nano- and microfibers from biocompatible polymers and biopolymers have received much attention in medical applications3 including biomedical structural elements (scaffolding used in tissue engineering,2,4–6 wound dressing,7 artificial organs and vascular grafts8), drug and vaccine delivery,9–11 protective shields in speciality fabrics, multifunctional membranes, etc. Other applications concern superhydrophobic coatings,12 encapsulation of solid materials,13 filter media for submicron particles in separation industry, composite reinforcement and structures for nano-electronic machines.
Resumo:
This study resulted in the development of a decision making tool for engineering consultancies looking to diversify into new markets. It reviewed existing decision tools used by contractor's entering new markets to develop a bespoke tool for engineering consultants to establish more rigor around the decision making process rather than rely purely on the intuition of company executives. The tool can be used for developing medium and long term company strategies or as a quick and efficient way to assess the viability of new market opportunities when they arise. A combination of Delphi and Analytical Hierarchy Process was selected as the basis of the decision theory.
Resumo:
Governments have recognised that the technological trades rely on knowledge embedded traditionally in science, technology, engineering and mathematics (STEM) disciplines. However, there is substantial evidence that students are turning away from these subjects in schools because the school curriculum is seen as irrelevant, with clear implications for not just vocational education but also higher education. In this paper, we report preliminary findings on the development of two curricula that attempt to integrate science and mathematics with workplace knowledge and practices. We argue that these curricula provide educational opportunities for students to pursue their preferred career pathways. These curricula were co-developed by industry and educational personnel across three industry sectors, namely, mining industry, aerospace and wine tourism. The aim was to provide knowledge appropriate for students moving from school to the workplace as trade apprentices in the respective industries. The analysis of curriculum and associated policy documents reveals that the curricula adopt applied learning orientations through teaching strategies and assessment practices which focus on practical skills. However, although key theoretical science and maths concepts have been well incorporated, the extent to which knowledge deriving from workplace practices is included varies across the curricula. The extent to which applications of concepts are included in the models depends on a number of factors not least the relevant expertise of the teacher as a practitioner in the industry. Our findings highlight the importance of teachers having substantial practical industry experience and the role that whole school policies play in attempts to align the range of learning experiences with the needs of industry.
Resumo:
The role of government in developing policies and guidelines for asset management is becoming increasingly important especially in view of ageing infrastructure and increasing financial risks for building infrastructure. This paper reviews policies and guidelines developed by Australian state authorities against industry developed principles. It utilizes the software program Leximancer to; a) produce conceptual visualisations of the key themes and concepts embedded within state-wide policies and guidelines, and b) systematically compare the differing asset management foci between states. The analyses reveal mixed results in terms of policy priorities and guidelines for managing assets at a strategic level across states. This paper outlines a rigorous analytical methodology to inform specific policy changes.
Resumo:
This thesis examines Customer Relationship Management and how the capabilities of an organisation to innovate can be enhanced via its implementation in a Knowledge Based Firm. The research identifies current customer knowledge components within an organisation and identifies for future use, CRM components for implementation within a Knowledge Based Firm. Opinions from a panel of experts' are identified for best practice customer relationship strategy, the most important CRM processes and identification of customer knowledge components that will form the basis of implementing a successful CRM to gain a competitive advantage through enhancing the innovative capability for a Knowledge Based Firm.
Resumo:
Incorporating engineering concepts into middle school curriculum is seen as an effective way to improve students’ problem-solving skills. A selection of findings is reported from a science, technology, engineering and mathematics (STEM)-based unit in which students in the second year (grade 8) of a three-year longitudinal study explored engineering concepts and principles pertaining to the functioning of simple machines. The culminating activity, the focus of this paper, required the students to design, construct, test, and evaluate a trebuchet catapult. We consider findings from one of the schools, a co-educational school, where we traced the design process developments of four student groups from two classes. The students’ descriptions and explanations of the simple machines used in their catapult design are examined, together with how they rated various aspects of their engineering designs. Included in the findings are students’ understanding of how their simple machines were simulated by the resources supplied and how the machines interacted in forming a complex machine. An ability to link physical materials with abstract concepts and an awareness of design constraints on their constructions were apparent, although a desire to create a ‘‘perfect’’ catapult despite limitations in the physical materials rather than a prototype for testing concepts was evident. Feedback from teacher interviews added further insights into the students’ developments as well as the teachers’ professional learning. An evolving framework for introducing engineering education in the pre-secondary years is proposed.
Resumo:
Using ZnO seed layers, an efficient approach for enhancing the heterointerface quality of electrodeposited ZnO–Cu2O solar cells is devised. We introduce a sputtered ZnO seed layer followed by the sequential electrodeposition of ZnO and Cu2O films. The seed layer is employed to control the growth and crystallinity and to augment the surface area of the electrodeposited ZnO films, thereby tuning the quality of the ZnO–Cu2O heterointerface. Additionally, the seed layer also assists in forming high quality ZnO films, with no pin-holes, in a high pH electrolyte solution. X-ray electron diffraction patterns, scanning electron and atomic force microscopy images, as well as photovoltaic measurements, clearly demonstrate that the incorporation of certain seed layers results in the alteration of the heterointerface quality, a change in the heterojunction area and the crystallinity of the films near the junction, which influence the current density of photovoltaic devices.
Resumo:
We report the influence of zinc oxide (ZnO) seed layers on the performance of ZnO-based memristive devices fabricated using an electrodeposition approach. The memristive element is based on a sandwich structure using Ag and Pt electrodes. The ZnO seed layer is employed to tune the morphology of the electrodeposited ZnO films in order to increase the grain boundary density as well as construct highly ordered arrangements of grain boundaries. Additionally, the seed layer also assists in optimizing the concentration of oxygen vacancies in the films. The fabricated devices exhibit memristive switching behaviour with symmetrical and asymmetrical hysteresis loops in the absence and presence of ZnO seed layers, respectively. A modest concentration of oxygen vacancy in electrodeposited ZnO films as well as an increase in the ordered arrangement of grain boundaries leads to higher switching ratios in Ag/ZnO/Pt devices.
Resumo:
Upgrading old buildings with the evolution of building requirements, this project investigates new approaches that can be applied to strengthen our own heritage buildings using historical and comparative analysis of heritage building restorations locally and abroad. Within the newly developing field of Heritage Engineering, it evaluates the innovative Concrete Overlay technique adapted to building restoration of the Brisbane City Hall. This study aims to extend the application of Concrete Overlay techniques and determine its compatibility specifically to heritage buildings. Concrete overlay involves drilling new reinforcement and placing concrete on top of the existing structure. It is akin to a bone transplant or bone grafting in the case of a human being and has been used by engineers to strengthen newer bridges.
Resumo:
A large proportion (over 12 per cent) of international and non-English speaking background (NESB) postgraduate research students enrol in engineering and information technology (IT) programs in Australian universities. They find themselves in an advanced research culture, and are technically and scientifically challenged early in their programs. This is in addition to cultural, social and religious isolation and linguistic barriers they have to contend with. The project team surveyed this cohort at QUT and UWA, on the hypothesis that they face challenges that are more discipline-specific. The results of the survey indicate that existing supervisory frameworks which are limited to linguistic contexts are not fully assisting these students and supervisors to achieve high quality research. The goal of this project is to extend these supervisory frameworks to a holistic model that will address the unique needs and supervisory issues these students face in engineering and IT disciplines. The model will be useable by all other Australian universities.
Resumo:
This paper, which was part of a larger study, reports on a survey that explored the perceptions of 69 graduate supervisors regarding issues in supervision from three higher education institutions in Australia. Factors that contribute to student success in higher education research degrees are many and diverse, including a complex dance of student factors, supervisor factors, and their supervisory context factors, and those informed by cultural and language differences. Therefore, a complex system approach using Bayesian network modelling was used to explore how student and/or supervisor factors influence the success of culturally and linguistically diverse (CALD) graduate students in Engineering and IT. Findings suggest that key factors include the experience of supervisors in terms of experience with the Australian higher education system, personal cross-cultural experience.
Resumo:
The development of hydrogels tailored for cartilage tissue engineering has been a research and clinical goal for over a decade. Directing cells towards a chondrogenic phenotype and promoting new matrix formation are significant challenges that must be overcome for the successful application of hydrogels in cartilage tissue therapies. Gelatin-methacrylamide (Gel-MA) hydrogels have shown promise for the repair of some tissues, but they have not been extensively investigated for cartilage tissue engineering. We encapsulated human chondrocytes in gel-MA based hydrogels, and show that with the incorporation of small quantities of photo-crosslinkable hyaluronic acid methacrylate (HA-MA), and to a lesser extent chondroitin sulfate methacrylate (CS-MA), chondrogenesis and mechanical properties can be enhanced. The addition of HA-MA to Gel-MA constructs resulted in more rounded cell morphologies, enhanced chondrogenesis as assessed by gene expression and immunofluorescence, and increased quantity and distribution of the newly synthesised ECM throughout the construct. Consequently, while the compressive moduli of control Gel-MA constructs increased by 26 kPa after 8 weeks culture, constructs with HA-MA and CS-MA increased by 96 kPa. The enhanced chondrogenic differentiation, distribution of ECM, and improved mechanical properties make these materials potential candidates for cartilage tissue engineering applications.
Resumo:
The transient leaf assay in Nicotiana benthamiana is widely used in plant sciences, with one application being the rapid assembly of complex multigene pathways that produce new fatty acid profiles. This rapid and facile assay would be further improved if it were possible to simultaneously overexpress transgenes while accurately silencing endogenes. Here, we report a draft genome resource for N. benthamiana spanning over 75% of the 3.1 Gb haploid genome. This resource revealed a two-member NbFAD2 family, NbFAD2.1 and NbFAD2.2, and quantitative RT-PCR (qRT-PCR) confirmed their expression in leaves. FAD2 activities were silenced using hairpin RNAi as monitored by qRT-PCR and biochemical assays. Silencing of endogenous FAD2 activities was combined with overexpression of transgenes via the use of the alternative viral silencing-suppressor protein, V2, from Tomato yellow leaf curl virus. We show that V2 permits maximal overexpression of transgenes but, crucially, also allows hairpin RNAi to operate unimpeded. To illustrate the efficacy of the V2-based leaf assay system, endogenous lipids were shunted from the desaturation of 18:1 to elongation reactions beginning with 18:1 as substrate. These V2-based leaf assays produced ~50% more elongated fatty acid products than p19-based assays. Analyses of small RNA populations generated from hairpin RNAi against NbFAD2 confirm that the siRNA population is dominated by 21 and 22 nt species derived from the hairpin. Collectively, these new tools expand the range of uses and possibilities for metabolic engineering in transient leaf assays. © 2012 Naim et al.