328 resultados para Genotype
Resumo:
Fibrodysplasia ossificans progressiva (FOP) is a rare autosomal dominant disorder of skeletal malformations and progressive extraskeletal ossification. We mapped FOP to chromosome 2q23-24 by linkage analysis and identified an identical heterozygous mutation (617G→A; R206H) in the glycine-serine (GS) activation domain of ACVR1, a BMP type I receptor, in all affected individuals examined. Protein modeling predicts destabilization of the GS domain, consistent with constitutive activation of ACVR1 as the underlying cause of the ectopic chondrogenesis, osteogenesis and joint fusions seen in FOP.
Resumo:
The MFG test is a family-based association test that detects genetic effects contributing to disease in offspring, including offspring allelic effects, maternal allelic effects and MFG incompatibility effects. Like many other family-based association tests, it assumes that the offspring survival and the offspring-parent genotypes are conditionally independent provided the offspring is affected. However, when the putative disease-increasing locus can affect another competing phenotype, for example, offspring viability, the conditional independence assumption fails and these tests could lead to incorrect conclusions regarding the role of the gene in disease. We propose the v-MFG test to adjust for the genetic effects on one phenotype, e.g., viability, when testing the effects of that locus on another phenotype, e.g., disease. Using genotype data from nuclear families containing parents and at least one affected offspring, the v-MFG test models the distribution of family genotypes conditional on offspring phenotypes. It simultaneously estimates genetic effects on two phenotypes, viability and disease. Simulations show that the v-MFG test produces accurate genetic effect estimates on disease as well as on viability under several different scenarios. It generates accurate type-I error rates and provides adequate power with moderate sample sizes to detect genetic effects on disease risk when viability is reduced. We demonstrate the v-MFG test with HLA-DRB1 data from study participants with rheumatoid arthritis (RA) and their parents, we show that the v-MFG test successfully detects an MFG incompatibility effect on RA while simultaneously adjusting for a possible viability loss.
Resumo:
Objectives. To confirm the association of a functional single-nucleotide polymorphism (SNP), C1858T (rs2476601), in the PTPN22 gene of British Caucasian rheumatoid arthritis (RA) patients and to evaluate its influence on the RA phenotype. Methods. A total of 686 RA patients and 566 healthy volunteers, all of British Caucasian origin, were genotyped for C1858T polymorphism by PCR-restriction fragment length polymorphism assay. Data were analysed using SPSS software and the χ 2 test as applicable. Results. The PTPN22 1858T risk allele was more prevalent in the RA patients (13.9%) compared with the healthy controls (10.3%) (P = 0.008, odds ratio 1.4, 95% confidence interval 1.09-1.79). The association of the T allele was restricted to those with rheumatoid factor (RF)-positive disease (n = 524, 76.4%) (P = 0.004, odds ratio 1.5, 95% confidence interval 1.1-1.9). We found no association between PTPN22 and the presence of the HLA-DRB1 shared epitope or clinical characteristics. Conclusions. We confirmed the previously reported association of PTPN22 with RF-positive RA, which was independent from the HLA-DRB1 genotype.
Resumo:
Objectives. Strong genetic association of rheumatoid arthritis (RA) with PADI4 (peptidyl arginine deiminase) has previously been described in Japanese, although this was not confirmed in a subsequent study in the UK. We therefore undertook a further study of genetic association between PADI4 and RA in UK Caucasians and also studied expression of PADI4 in the peripheral blood of patients with RA. Methods. Seven single-nucleotide polymorphisms (SNP) were genotyped using polymerase chain reaction (PCR)-restriction fragment length polymorphism in 111 RA cases and controls. A marker significantly associated with RA (PADI4_100, rs#2240339) in this first data set (P = 0.03) was then tested for association in a larger group of 439 RA patients and 428 controls. PADI4 transcription was also assessed by real-time quantitative PCR using RNA extracted from peripheral blood mononuclear cells from 13 RA patients and 11 healthy controls. Results. A single SNP was weakly associated with RA (P = 0.03) in the initial case-control study, a single SNP (PADI4_100) and a two marker haplotype of that SNP and the neighbouring SNP (PADI4_04) were significantly associated with RA (P = 0.02 and P = 0.03 respectively). PADI4_100 was not associated with RA in a second sample set. PADI4 expression was four times greater in cases than controls (P = 0.004), but expression levels did not correlate with the levels of markers of inflammation. Conclusion. PADI4 is significantly overexpressed in the blood of RA patients but genetic variation within PADI4 is not a major risk factor for RA in Caucasians.
Resumo:
The major histocompatibility complex (MHC) on chromosome 6 is associated with susceptibility to more common diseases than any other region of the human genome, including almost all disorders classified as autoimmune. In type 1 diabetes the major genetic susceptibility determinants have been mapped to the MHC class II genes HLA-DQB1 and HLA-DRB1 (refs 1–3), but these genes cannot completely explain the association between type 1 diabetes and the MHC region4, 5, 6, 7, 8, 9, 10, 11. Owing to the region's extreme gene density, the multiplicity of disease-associated alleles, strong associations between alleles, limited genotyping capability, and inadequate statistical approaches and sample sizes, which, and how many, loci within the MHC determine susceptibility remains unclear. Here, in several large type 1 diabetes data sets, we analyse a combined total of 1,729 polymorphisms, and apply statistical methods—recursive partitioning and regression...
A novel human leucocyte antigen-DRB1 genotyping method based on multiplex primer extension reactions
Resumo:
We have developed and validated a semi-automated fluorescent method of genotyping human leucocyte antigen (HLA)-DRB1 alleles, HLA-DRB1*01-16, by multiplex primer extension reactions. This method is based on the extension of a primer that anneals immediately adjacent to the single-nucleotide polymorphism with fluorescent dideoxynucleotide triphosphates (minisequencing), followed by analysis on an ABI Prism 3700 capillary electrophoresis instrument. The validity of the method was confirmed by genotyping 261 individuals using both this method and polymerase chain reaction with sequence-specific primer (PCR-SSP) or sequencing and by demonstrating Mendelian inheritance of HLA-DRB1 alleles in families. Our method provides a rapid means of performing high-throughput HLA-DRB1 genotyping using only two PCR reactions followed by four multiplex primer extension reactions and PCR-SSP for some allele groups. In this article, we describe the method and discuss its advantages and limitations.
Resumo:
Objectives. To determine whether genetic polymorphisms in or near the transforming growth factor β1 (TGFB1) locus were associated d with susceptibility to or severity of ankylosing spondylitis (AS). Methods. Five intragenic single-nucleotide polymorphisms (SNP) and three microsatellite markers flanking the TGFB1 locus were genotyped. Seven hundred and sixty-two individuals from 184 multiplex families were genotyped for the microsatellite markers and two of the promoter SNPs. One thousand and two individuals from 212 English and 170 Finnish families with AS were genotyped for all five intragenic SNPs. A structured questionnaire was used to assess the age of symptom onset, disease duration and disease severity scores, including the BASDAI (Bath Ankylosing Spondylitis Disease Activity Index) and BASFI (Bath Ankylosing Spondylitis Functional Index). Results. A weak association was noted between the rare TGFB1 + 1632 T allele and AS in the Finnish population (P = 0.04) and in the combined data set (P = 0.03). No association was noted between any other SNPs or SNP haplotype and AS, even among those families with positive non-parametric linkage scores. The TGFB1 +1632 polymorphism was also associated with a younger age of symptom onset (English population, allele 2 associated with age of onset greater by 4.2 yr, P = 0.05; combined data set, allele 2 associated with age of onset greater by 3.2 yr, P = 0.02). A haplotype of coding region SNPs (TGFB1 +869/ +915+1632 alleles 2/1/2) was associated with age of symptom onset in both the English parent-case trios and the combined data set (English data set, haplotype 2/1/2 associated with age of onset greater by 4.9 yr, P = 0.03; combined data set, haplotype 2/1/2 associated with greater age of onset by 4.2 yr, P = 0.006). Weak linkage with AS susceptibility was noted and the peak LOD score was 1.3 at distance 2 cM centromeric to the TGFB1 gene. No other linkage or association was found between quantitative traits and the markers. Conclusion. This study suggests that the polymorphisms within the TGFB1 gene play at most a small role in AS and that other genes encoded on chromosome 19 are involved in susceptibility to the disease.
Resumo:
Background. Rheumatoid arthritis (RA) is strongly associated with a series of HLA-DRB1 alleles that encode a conserved sequence of amino acids (70Q/R K/R R A A74) in the DRβ1 chain, known as the shared epitope (SE). However 30% of patients are negative for DRB1*04 and 15% are SE-negative. Exposure to these alleles as non-inherited maternal antigens (NIMA) might explain this discrepancy. We undertook a family study to investigate the role of NIMA in RA. Methods. One hundred families, including the RA proband and both parents, were recruited. HLA-DRB1 genotyping was performed using an allele-specific polymerase chain reaction by standard methods. The frequencies of NIMA and non-inherited paternal antigens (NIPA) were compared using contingency tables and a two-tailed P test. We then reviewed four previously published studies of NIMA in RA and conducted an analysis of the combined data Results. We identified 36 families in which the proband was DRB1*04-negative and 13 in which the proband lacked the SE. There was an excess of DRB1*04 and SE NIMA (P=0.05) compared with NIPA. Combined analysis with previous studies showed that 53/231 mothers (23%) versus 25/205 fathers (12%) had a non-inherited DRB1*04 (P=0.003) and 30/99 mothers versus 18/101 fathers had a non-inherited SE allele (P=0.03). Conclusion. A role for HLA NIMA in RA is suggested by these results.
Resumo:
Differences in genetic control of BMD by skeletal sites and genders were examined by complex segregation analysis in 816 members of 147 families with probands with extreme low BMD. Spine BMD correlated more strongly in male-male comparisons and hip BMD in female-female comparisons, consistent with gender- and site-specificity of BMD heritability. Introduction: Evidence from studies in animals and humans suggests that the genetic control of bone mineral density (BMD) may differ at different skeletal sites and between genders. This question has important implications for the design and interpretation of genetic studies of osteoporosis. Methods: We examined the genetic profile of 147 families with 816 individuals recruited through probands with extreme low BMD (T-score < −2.5, Z-score < −2.0). Complex segregation analysis was performed using the Pedigree Analysis Package. BMD was measured by DXA at both lumbar spine (L1-L4) and femoral neck. Results: Complex segregation analysis excluded purely monogenic and environmental models of segregation of lumbar spine and femoral neck BMD in these families. Pure polygenic models were excluded at the lumbar spine when menopausal status was considered as a covariate, but not at the femoral neck. Mendelian models with a residual polygenic component were not excluded. These models were consistent with the presence of a rare Mendelian genotype of prevalence 3–19 %, causing high BMD at the hip and spine in these families, with additional polygenic effects. Total heritability range at the lumbar spine was 61–67 % and at the femoral neck was 44–67 %. Significant differences in correlation of femoral neck and lumbar spine BMD were observed between male and female relative pairs, with male-male comparisons exhibiting stronger lumbar spine BMD correlation than femoral neck, and female-female comparisons having greater femoral neck BMD correlation than lumbar spine. These findings remained true for parent-offspring correlations when menopausal status was taken into account. The recurrence risk ratio for siblings of probands of a Z-score < −2.0 was 5.4 at the lumbar spine and 5.9 at the femoral neck. Conclusions: These findings support gender- and site-specificity of the inheritance of BMD. These results should be considered in the design and interpretation of genetic studies of osteoporosis.
Resumo:
The role of the CTLA-4 antigen in the development of autoimmune diseases is well documented, with several autoimmune disorders showing association or linkage with the CTLA-4 locus. Its role in the aetiology of rheumatoid arthritis (RA) however, remains unclear, as the functional studies of the B7-CTLA-4 pathway in mouse models of RA and genetic studies in humans have given contrasting results. We have studied the single nucleotide polymorphism at position +49 (A/G) of the CTLA-4 gene, in a cohort of 421 RA cases and 452 healthy controls from the UK. Despite the high statistical power to detect even a weak susceptibility effect, no significant association was found. We also analysed the distribution of the allele and genotype frequencies with respect to the presence of the shared epitope (a known RA susceptibility factor) and found no statistically significant differences. We conclude that, although the importance of the B7-CTLA-4 interaction in the development of RA can not be excluded, the CTLA-4 gene is unlikely to be a predisposing factor to this disease.
Resumo:
Genetic factors are known to influence both the peak bone mass and probably the rate of change in bone density. A range of regulatory and structural genes has been proposed to be involved including collagen 1α1 (COL1A1), the estrogen receptor (ER), and the vitamin D receptor (VDR), but the actual genes involved are uncertain. We therefore studied the role of the COL1A1 and VDR loci in control of bone density by linkage in 45 dizygotic twin pairs and 29 nuclear families comprising 120 individuals. The influences on bone density of polymorphisms of COL1A1, VDR, and ER were studied by association both cross-sectionally and longitudinally in 193 elderly postmenopausal women (average age, 69 years) over a mean follow-up time of 6.3 years. Weak linkage of the COL1A1 locus with bone density was observed in both twins and families (p = 0.02 in both data sets), confirming previous observations of linkage of this locus with bone density. Association between the MscI polymorphism of COL1A1 and rate of lumbar spine bone loss was observed with significant gene-environment interaction related to dietary calcium intake (p = 0.0006). In the lowest tertile of dietary calcium intake, carriers of "s" alleles lost more bone than "SS" homozygotes (p = 0.01), whereas the opposite was observed in the highest dietary calcium intake (p = 0.003). Association also was observed between rate of bone loss at both the femoral neck and the lumbar spine and the TaqI VDR polymorphism (p = 0.03). This association was strongest in those in the lowest tertile of calcium intake, also suggesting the presence of gene-environment interaction involving dietary calcium and VDR, influencing bone turnover. No significant association was observed between the PvuII ER polymorphism alone or in combination with VDR or COL1A1 genotypes, with either bone density or its rate of change. These data support the involvement of COL1A1 in determination of bone density and the interaction of both COL1A1 and VDR with calcium intake in regulation of change of bone density over time.
Resumo:
The objective of this study was to investigate TNF promoter region polymorphisms for association with susceptibility to ankylosing spondylitis (AS). The TNF -238 and -308 polymorphisms were genotyped in 306 English AS cases and 204 ethnically matched healthy B27-positive controls, and 96 southern German AS cases, 58 B27-positive and 251 B27-negative ethnically matched controls. Additionally, the TNF -376 polymorphism was genotyped in the southern German cases and controls. In the southern German AS patients a significant reduction in TNF -308.2 alleles was seen, compared with B27 positive controls (odds ratio 0.4, P= 0.03, 95% confidence interval 0.2-0.9), but no difference in allele frequencies was observed at TNF -238. Significant association between AS and both TNF -238 and TNF -308 was excluded in the English cases. These results confirm previous observations in the southern German population of association between TNF promoter region polymorphisms and AS, but the lack of association in the English population suggests that these polymorphisms themselves are unlikely to be directly involved. More likely, a second, non-HLA-B, MHC locus is involved in susceptibility to AS in these two populations.
Resumo:
Ankylosing spondylitis (AS) is a common and highly familial rheumatic disorder. The sibling recurrence risk ratio for the disease is 63 and heritability assessed in twins > 90%. Although MHC genes, including HLA-B27, contribute only 20-50% of the genetic risk for the disease, no non-MHC gene has yet been convincingly demonstrated to influence either susceptibility to the disease or its phenotypic expression. Previous linkage and association studies have suggested the presence of a susceptibility gene for AS close to, or within, the cytochrome P450 2D6 gene (CYP2D6, debrisoquine hydroxylase) located at chromosome 22q13.1. We performed a linkage study of chromosome 22 in 200 families with AS affected sibling-pairs. Association of alleles of the CYP2D6 gene was examined by both case-control and within-family means. For case-control studies, 617 unrelated individuals with AS (361 probands from sibling-pair and parent-case trio families and 256 unrelated non-familial sporadic cases) and 402 healthy ethnically matched controls were employed. For within-family association studies, 361 families including 161 parent-case trios and 200 affected sibling-pair families were employed. Homozygosity for poor metabolizer alleles was found to be associated with AS. Heterozygosity for the most frequent poor metabolizer allele (CYP2D6*4) was not associated with increased susceptibility to AS. Significant within-family association of CYP2D6*4 alleles and AS was demonstrated. Weak linkage was also demonstrated between CYP2D6 and AS. We postulate that altered metabolism of a natural toxin or antigen by the CYP2D6 gene may increase susceptibility to AS.
Resumo:
Cystic fibrosis (CF) patients require pancreatic enzyme replacement therapy to correct pancreatic insufficiency. These enzymes are derived from porcine pancreas and are known to be antigenic. To determine the possible clinical consequences, a specific ELISA was developed to detect IgG antibody directed against porcine trypsin (PTAb) in the sera of CF patients. The assay was used to evaluate the occurrence of PTAb in a cross sectional study of 103 CF patients in relation to the introduction of porcine enzyme therapy, clinical status and genotype. Antibodies against porcine trypsin were detected in the sera of 63% of patients unrelated to the age of commencement or the duration of enzyme therapy. No differences were observed in the clinical status of CF patients who had developed PTAb (n = 65) and those who had no detectable PTAb (n = 38) as determined from: the current prescribed dose of porcine pancreatic enzyme capsules; Z scores for height and weight; and respiratory function tests. It is suggested that the PTAb commonly found in the sera of CF patients are of doubtful clinical significance but the prospect of PTAb contributing to immune complex disease should be examined further.