334 resultados para Food conservation
Resumo:
Food materials are complex in nature as it has heterogeneous, amorphous, hygroscopic and porous properties. During processing, microstructure of food materials changes which significantly affects other properties of food. An appropriate understanding of the microstructure of the raw food material and its evolution during processing is critical in order to understand and accurately describe dehydration processes and quality anticipation. This review critically assesses the factors that influence the modification of microstructure in the course of drying of fruits and vegetables. The effect of simultaneous heat and mass transfer on microstructure in various drying methods is investigated. Effects of changes in microstructure on other functional properties of dried foods are discussed. After an extensive review of the literature, it is found that development of food structure significantly depends on fresh food properties and process parameters. Also, modification of microstructure influences the other properties of final product. An enhanced understanding of the relationships between food microstructure, drying process parameters and final product quality will facilitate the energy efficient optimum design of the food processor in order to achieve high-quality food
Resumo:
Porosity is one of the key parameters of the macroscopic structure of porous media, generally defined as the ratio of the free spaces occupied (by the volume of air) within the material to the total volume of the material. Porosity is determined by measuring skeletal volume and the envelope volume. Solid displacement method is one of the inexpensive and easy methods to determine the envelope volume of a sample with an irregular shape. In this method, generally glass beads are used as a solid due to their uniform size, compactness and fluidity properties. The smaller size of the glass beads means that they enter into the open pores which have a larger diameter than the glass beads. Although extensive research has been carried out on porosity determination using displacement method, no study exists which adequately reports micro-level observation of the sample during measurement. This study set out with the aim of assessing the accuracy of solid displacement method of bulk density measurement of dried foods by micro-level observation. Solid displacement method of porosity determination was conducted using a cylindrical vial (cylindrical plastic container) and 57 µm glass beads in order to measure the bulk density of apple slices at different moisture contents. A scanning electron microscope (SEM), a profilometer and ImageJ software were used to investigate the penetration of glass beads into the surface pores during the determination of the porosity of dried food. A helium pycnometer was used to measure the particle density of the sample. Results show that a significant number of pores were large enough to allow the glass beads to enter into the pores, thereby causing some erroneous results. It was also found that coating the dried sample with appropriate coating material prior to measurement can resolve this problem.
Resumo:
Background Food neophobia, the rejection of unknown or novel foods, may result in poor dietary patterns. This study investigates the cross-sectional relationship between neophobia in children aged 24 months and variety of fruit and vegetable consumption, intake of discretionary foods and weight. Methods Secondary analysis of data from 330 parents of children enrolled in the NOURISH RCT (control group only) and SAIDI studies was performed using data collected at child age 24 months. Neophobia was measured at 24 months using the Child Food Neophobia Scale (CFNS). The cross-sectional associations between total CFNS score and fruit and vegetable variety, discretionary food intake and BMI (Body Mass Index) Z-score were examined via multiple regression models; adjusting for significant covariates. Results At 24 months, more neophobic children were found to have lower variety of fruits (β=-0.16, p=0.003) and vegetables (β=-0.29, p<0.001) but have a greater proportion of daily energy from discretionary foods (β=0.11, p=0.04). There was no significant association between BMI Z-score and CFNS score. Conclusions Neophobia is associated with poorer dietary quality. Results highlight the need for interventions to (1) begin early to expose children to a wide variety of nutritious foods before neophobia peaks and (2) enable health professionals to educate parents on strategies to overcome neophobia.
Resumo:
Although local food consumption is growing in importance there remains a lack of research addressing local food consumption preferences in less-developed countries. This paper aims to examine the drivers of local food purchase intentions for Chilean consumers. A model of local food behavioral intention was developed from consumer behavior theory. The model was tested using structural equation modeling with data from Chilean shoppers located in Santiago (n=283). The analysis revealed that Chilean consumers are willing to purchase local food based on their positive attitude towards buying local food and their feelings of connectedness with the environment, but not because they have a desire to support local businesses. These findings have implications for retailers, marketers and food producers.
Resumo:
This thesis is a trans-disciplinary study of domestic food waste in Australia. Firstly, it examines why consumers are prone to waste food. Secondly, it explores several situated design interventions to reduce domestic food waste by informing consumer food supply and location awareness, and improving the level of food literacy among consumers. The thesis outcomes have implications for academic and industry domains within the fields of Human-Computer Interaction, urban informatics, environmental sustainability, food security and public health.
Resumo:
Access to nutritious, safe and culturally appropriate food is a basic human right (Mechlem, 2004). Food sovereignty defines this right through the empowerment of the people to redefine food and agricultural systems, and through ecologically sustainable production methods. At the heart of the food sovereignty movement are the interests of producers, distributors and consumers, rather than the interests of markets and corporations, which dominate the current globalized food system (Hinrichs, 2003). Food sovereignty challenges designers to enable people to innovate the food system. We are yet to develop economically viable solutions for scaling projects and providing citizens, governments and business with tools to develop and promote projects to innovate food systems and promote food sovereignty (Meroni, 2011; Murray, Caulier-Grice and Mulgan, 2010). This article examines how a design-led approach to innovation can assist in the development of new business models and ventures for local food systems: this is presented through an emerging field of research ‘Design-Led Food Communities’. Design-Led Food Communities enables citizens, governments and business to innovate local food projects through the application of design. This article reports on the case study of the Docklands Food Hub Project in Melbourne, Australia. Preliminary findings demonstrate valued outcomes, but also a deficiency in the design process to generate food solutions collaboratively between government, business and citizens.
Resumo:
1. In conservation decision-making, we operate within the confines of limited funding. Furthermore, we often assume particular relationships between management impact and our investment in management. The structure of these relationships, however, is rarely known with certainty - there is model uncertainty. We investigate how these two fundamentally limiting factors in conservation management, money and knowledge, impact optimal decision-making. 2. We use information-gap decision theory to find strategies for maximizing the number of extant subpopulations of a threatened species that are most immune to failure due to model uncertainty. We thus find a robust framework for exploring optimal decision-making. 3. The performance of every strategy decreases as model uncertainty increases. 4. The strategy most robust to model uncertainty depends not only on what performance is perceived to be acceptable but also on available funding and the time horizon over which extinction is considered. 5. Synthesis and applications. We investigate the impact of model uncertainty on robust decision-making in conservation and how this is affected by available conservation funding. We show that subpopulation triage can be a natural consequence of robust decision-making. We highlight the need for managers to consider triage not as merely giving up, but as a tool for ensuring species persistence in light of the urgency of most conservation requirements, uncertainty and the poor state of conservation funding. We illustrate this theory by a specific application to allocation of funding to reduce poaching impact on the Sumatran tiger Panthera tigris sumatrae in Kerinci Seblat National Park. © 2008 The Authors.
Resumo:
Money is often a limiting factor in conservation, and attempting to conserve endangered species can be costly. Consequently, a framework for optimizing fiscally constrained conservation decisions for a single species is needed. In this paper we find the optimal budget allocation among isolated subpopulations of a threatened species to minimize local extinction probability. We solve the problem using stochastic dynamic programming, derive a useful and simple alternative guideline for allocating funds, and test its performance using forward simulation. The model considers subpopulations that persist in habitat patches of differing quality, which in our model is reflected in different relationships between money invested and extinction risk. We discover that, in most cases, subpopulations that are less efficient to manage should receive more money than those that are more efficient to manage, due to higher investment needed to reduce extinction risk. Our simple investment guideline performs almost as well as the exact optimal strategy. We illustrate our approach with a case study of the management of the Sumatran tiger, Panthera tigris sumatrae, in Kerinci Seblat National Park (KSNP), Indonesia. We find that different budgets should be allocated to the separate tiger subpopulations in KSNP. The subpopulation that is not at risk of extinction does not require any management investment. Based on the combination of risks of extinction and habitat quality, the optimal allocation for these particular tiger subpopulations is an unusual case: subpopulations that occur in higher-quality habitat (more efficient to manage) should receive more funds than the remaining subpopulation that is in lower-quality habitat. Because the yearly budget allocated to the KSNP for tiger conservation is small, to guarantee the persistence of all the subpopulations that are currently under threat we need to prioritize those that are easier to save. When allocating resources among subpopulations of a threatened species, the combined effects of differences in habitat quality, cost of action, and current subpopulation probability of extinction need to be integrated. We provide a useful guideline for allocating resources among isolated subpopulations of any threatened species. © 2010 by the Ecological Society of America.
Resumo:
It is becoming increasingly popular to consider species interactions when managing ecological foodwebs. Such an approach is useful in determining how management can affect multiple species, with either beneficial or detrimental consequences. Identifying such actions is particularly valuable in the context of conservation decision making as funding is severely limited. This paper outlines a new approach that simplifies the resource allocation problem in a two species system for a range of species interactions: independent, mutualism, predator-prey, and competitive exclusion. We assume that both species are endangered and we do not account for decisions over time. We find that optimal funding allocation is to the conservation of the species with the highest marginal gain in expected probability of survival and that, across all except mutualist interaction types, optimal conservation funding allocation differs between species. Loss in efficiency from ignoring species interactions was most severe in predator-prey systems. The funding problem we address, where an ecosystem includes multiple threatened species, will only become more commonplace as increasing numbers of species worldwide become threatened. © 2011 Elsevier B.V.
Resumo:
Decision-making for conservation is conducted within the margins of limited funding. Furthermore, to allocate these scarce resources we make assumptions about the relationship between management impact and expenditure. The structure of these relationships, however, is rarely known with certainty. We present a summary of work investigating the impact of model uncertainty on robust decision-making in conservation and how this is affected by available conservation funding. We show that achieving robustness in conservation decisions can require a triage approach, and emphasize the need for managers to consider triage not as surrendering but as rational decision making to ensure species persistence in light of the urgency of the conservation problems, uncertainty, and the poor state of conservation funding. We illustrate this theory by a specific application to allocation of funding to reduce poaching impact on the Sumatran tiger Panthera tigris sumatrae in Kerinci Seblat National Park, Indonesia. To conserve our environment, conservation managers must make decisions in the face of substantial uncertainty. Further, they must deal with the fact that limitations in budgets and temporal constraints have led to a lack of knowledge on the systems we are trying to preserve and on the benefits of the actions we have available (Balmford & Cowling 2006). Given this paucity of decision-informing data there is a considerable need to assess the impact of uncertainty on the benefit of management options (Regan et al. 2005). Although models of management impact can improve decision making (e.g.Tenhumberg et al. 2004), they typically rely on assumptions around which there is substantial uncertainty. Ignoring this 'model uncertainty', can lead to inferior decision-making (Regan et al. 2005), and potentially, the loss of the species we are trying to protect. Current methods used in ecology allow model uncertainty to be incorporated into the model selection process (Burnham & Anderson 2002; Link & Barker 2006), but do not enable decision-makers to assess how this uncertainty would change a decision. This is the basis of information-gap decision theory (info-gap); finding strategies most robust to model uncertainty (Ben-Haim 2006). Info-gap has permitted conservation biology to make the leap from recognizing uncertainty to explicitly incorporating severe uncertainty into decision-making. In this paper we present a summary of McDonald-Madden et al (2008a) who use an info-gap framework to address the impact of uncertainty in the functional representations of biological systems on conservation decision-making. Furthermore, we highlight the importance of two key elements limiting conservation decision-making - funding and knowledge - and how they interact to influence the best management strategy for a threatened species. Copyright © ASCE 2011.
Resumo:
[Letter to editor, brief commentary or brief communication ]
Resumo:
Threatened species often exist in a small number of isolated subpopulations. Given limitations on conservation spending, managers must choose from strategies that range from managing just one subpopulation and risking all other subpopulations to managing all subpopulations equally and poorly, thereby risking the loss of all subpopulations. We took an economic approach to this problem in an effort to discover a simple rule of thumb for optimally allocating conservation effort among subpopulations. This rule was derived by maximizing the expected number of extant subpopulations remaining given n subpopulations are actually managed. We also derived a spatiotemporally optimized strategy through stochastic dynamic programming. The rule of thumb suggested that more subpopulations should be managed if the budget increases or if the cost of reducing local extinction probabilities decreases. The rule performed well against the exact optimal strategy that was the result of the stochastic dynamic program and much better than other simple strategies (e.g., always manage one extant subpopulation or half of the remaining subpopulation). We applied our approach to the allocation of funds in 2 contrasting case studies: reduction of poaching of Sumatran tigers (Panthera tigris sumatrae) and habitat acquisition for San Joaquin kit foxes (Vulpes macrotis mutica). For our estimated annual budget for Sumatran tiger management, the mean time to extinction was about 32 years. For our estimated annual management budget for kit foxes in the San Joaquin Valley, the mean time to extinction was approximately 24 years. Our framework allows managers to deal with the important question of how to allocate scarce conservation resources among subpopulations of any threatened species. © 2008 Society for Conservation Biology.
Resumo:
Almost 10 years ago, Pullin and Knight (2001) called for an “effectiveness revolution in conservation” to be enabled by the systematic evaluation of evidence for conservation decision making. Drawing from the model used in clinicalmedicine, they outlined the concept of “evidencebased conservation” in which existing information, or evidence, from relevant and rigorous research is compiled and analyzed in a systematic manner to inform conservation actions (Cochrane 1972). The promise of evidencebased conservation has generated significant interest; 25 systematic reviews have been completed since 2004 and dozens are underway (Collaboration for Environmental Evidence 2010). However we argue that an “effectiveness revolution” (Pullin & Knight 2001) in conservation will not be possible unless mechanisms are devised for incorporating the growing evidence base into decision frameworks. For conservation professionals to accomplish the missions of their organizations they must demonstrate that their actions actually achieve objectives (Pullin & Knight 2009). Systematic evaluation provides a framework for objectively evaluating the effectiveness of actions. To leverage the benefit of these evaluations, we need resource-allocation systems that are responsive to their outcomes. The allocation of conservation resources is often the product of institutional priorities or reliance on intuition (Sutherland et al. 2004; Pullin & Knight 2005; Cook et al. 2010). We highlight the NICE technologyappraisal process because it provides an example of formal integration of systematic-evidence evaluation with provision of guidance for action. The transparent process, which clearly delineates costs and benefits of each alternative action, could also provide the public with new insight into the environmental effects of different decisions. This insight could stimulate a wider discussion about investment in conservation by demonstrating how changes in funding might affect the probability of achieving conservation objectives. ©2010 Society for Conservation Biology
Resumo:
In ecosystems driven by water availability, plant community dynamics depend on complex interactions between vegetation, hydrology, and human water resources use. Along ephemeral rivers—where water availability is erratic—vegetation and people are particularly vulnerable to changes in each other's water use. Sensible management requires that water supply be maintained for people, while preserving ecosystem health. Meeting such requirements is challenging because of the unpredictable water availability. We applied information gap decision theory to an ecohydrological system model of the Kuiseb River environment in Namibia. Our aim was to identify the robustness of ecosystem and water management strategies to uncertainties in future flood regimes along ephemeral rivers. We evaluated the trade-offs between alternative performance criteria and their robustness to uncertainty to account for both (i) human demands for water supply and (ii) reducing the risk of species extinction caused by water mining. Increasing uncertainty of flood regime parameters reduced the performance under both objectives. Remarkably, the ecological objective (species coexistence) was more sensitive to uncertainty than the water supply objective. However, within each objective, the relative performance of different management strategies was insensitive to uncertainty. The ‘best’ management strategy was one that is tuned to the competitive species interactions in the Kuiseb environment. It regulates the biomass of the strongest competitor and, thus, at the same time decreases transpiration, thereby increasing groundwater storage and reducing pressure on less dominant species. This robust mutually acceptable strategy enables species persistence without markedly reducing the water supply for humans. This study emphasises the utility of ecohydrological models for resource management of water-controlled ecosystems. Although trade-offs were identified between alternative performance criteria and their robustness to uncertain future flood regimes, management strategies were identified that help to secure an ecologically sustainable water supply.