324 resultados para Endurance sports -- Physiological aspects
Resumo:
Technical dinitrotoluene (DNT) is a mixture of 2,4- and 2,6-DNT. In humans, industrial or environmental exposure can occur orally, by inhalation, or by skin contact. The classification of DNT as an 'animal carcinogen' is based on the formation of malignant tumors in kidneys, liver, and mammary glands of rats and mice. Clear signs of toxic nephropathy were found in rats dosed with DNT, and the concept was derived of an interrelation between renal toxicity and carcinogenicity. Recent data point to the carcinogenicity of DNT on the urinary tract of exposed humans. Between 1984 and 1997, 6 cases of urothelial cancer and 14 cases of renal cell cancer were diagnosed in a group of 500 underground mining workers in the copper mining industry of the former GDR and having high exposures to explosives containing technical DNT. The incidences of both urothelial and renal cell tumors in this group were 4.5 and 14.3 times higher, respectively, than anticipated on the basis of the cancer registers of the GDR. The genotyping of all identified tumor patients for the polymorphic enzymes NAT2, GSTM1, and GSTT1 identified the urothelial tumor cases as exclusively 'slow acetylates'. A group of 161 miners highly exposed to DNT was investigated for signs of subclinical renal damage. The exposures were categorized semi-quantitatively into 'low', 'medium', 'high', and 'very high'. A straight dose-dependence of the excretion of urinary biomarker proteins with the ranking of exposure was seen. Biomarker excretion (alpha1-microglobulin, glutathione S-transferases alpha and pi) indicated that DNT-induced damage was directed toward the tubular system. New data on DNT-exposed humans appear consistent with the concept of cancer initiation by DNT isomers and the subsequent promotion of renal carcinogenesis by selective damage to the proximal tubule. The differential pathways of metabolic activation of DNT appear to apply to the proximal tubule of the kidney and to the urothelium of the renal pelvis and lower urinary tract as target tissues of carcinogenicity.
Resumo:
Occupational standards concerning the allowable concentrations of chemical compounds in the ambient air of workplaces have been established in several countries at national levels. With the integration of the European Union, a need exists for establishing harmonized Occupational Exposure Limits. For analytical developments, it is apparent that methods for speciation or fractionation of carcinogenic metal compounds will be of increasing practical importance for standard setting. Criteria of applicability under field conditions, cost-effectiveness, and robustness are practical driving forces for new developments. When the European Union issued a list of 62 chemical substances with Occupational Exposure Limits in 2000, 25 substances received a 'skin' notation. The latter indicates that toxicologically significant amounts may be taken up via the skin. Similar notations exist on national levels. For such substances, monitoring concentrations in ambient air will not be sufficient; biological monitoring strategies will gain further importance in the medical surveillance of workers who are exposed to such compounds. Proceedings in establishing legal frameworks for a biological monitoring of chemical exposures within Europe are paralleled by scientific advances in this field. A new aspect is the possibility of a differential adduct monitoring, using blood proteins of different half-life or lifespan. This technique allows differentiation between long-term mean exposure to reactive chemicals and short-term episodes, for example, by accidental overexposure. For further analytical developments, the following issues have been addressed as being particularly important: New dose monitoring strategies, sensitive and reliable methods for detection of DNA adducts, cytogenetic parameters in biological monitoring, methods to monitor exposure to sensitizing chemicals, and parameters for individual susceptibilities to chemical toxicants.
Resumo:
Saliva is a crucial biofluid for oral health and is also of increasing importance as a non-invasive source of disease biomarkers. Salivary alpha-amylase is an abundant protein in saliva, and changes in amylase expression have been previously associated with a variety of diseases and conditions. Salivary alpha-amylase is subject to a high diversity of post-translational modifications, including physiological proteolysis in the oral cavity. Here we developed methodology for rapid sample preparation and non-targeted LC-ESI-MS/MS analysis of saliva from healthy subjects and observed an extreme diversity of alpha-amylase proteolytic isoforms. Our results emphasize the importance of consideration of post-translational events such as proteolysis in proteomic studies, biomarker discovery and validation, particularly in saliva. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Introduction This research evaluated the effect of tendinopathy on the cumulative transverse strain response of the patellar tendon to a bout of resistive quadriceps exercise. Methods Nine adults with unilateral patellar tendinopathy (age 18.2±0.7 years, height 1.92±0.06 m and weight 76.8±6.8 kg) and ten healthy adults free of knee pain (age 17.8±0.8 years, height 1.83±0.05 m and weight 73.2±7.6 kg) underwent standardised sagittal sonograms (7.2–14 MHz linear–array transducer) of both patellar tendons immediately prior and following 45 repetitions of a double–leg decline–squat exercise performed against a resistance of 145% bodyweight. Tendon thickness was determined 5–mm and 25–mm distal to the patellar pole. Transverse Hencky strain was calculated as the natural log of the ratio of post– to pre–exercise tendon thickness and expressed as a percentage. Measures of tendon echogenicity were calculated within the superficial and deep aspects of each tendon site from gray–scale profiles. Intratendinous microvessels were evaluated using power Doppler ultrasound. Results The cumulative transverse strain response to exercise in symptomatic tendinopathy was significantly lower than that of asymptomatic and healthy tendon (P<.05). There was also a significant reduction (57%) in the area of microvascularity immediately following exercise (P=.05), which was positively correlated (r=0.93, P<.05) with VISA-P score. Conclusions This study is the first to show that patellar tendinopathy is associated with an altered morphological and mechanical response of the tendon to exercise, which is manifest by a reduction in cumulative transverse strain and microvascularity, when present. Research directed toward identifying factors that influence the acute microvascular and transverse strain response of the patellar tendon to exercise in the various stages of tendinopathy is warranted.
Resumo:
This study evaluated the physiological tolerance times when wearing explosive and chemical (>35kg) personal protective equipment (PPE) in simulated environmental extremes across a range of differing work intensities. Twelve healthy males undertook nine trials which involved walking on a treadmill at 2.5, 4 and 5.5 km.h-1 in the following environmental conditions, 21, 30 and 37 °C wet bulb globe temperature (WBGT). Participants exercised for 60 min or until volitional fatigue, core temperature reached 39 °C, or heart rate exceeded 90% of maximum. Tolerance time, core temperature, skin temperature, mean body temperature, heart rate and body mass loss were measured. Exercise time was reduced in the higher WBGT environments (WBGT37
Resumo:
This experiment examined whether trait regulatory focus moderates the effects of task control on stress reactions during a demanding work simulation. Regulatory focus describes two ways in which individuals self-regulate toward desired goals: promotion and prevention. As highly promotion-focused individuals are oriented toward growth and challenge, it was expected that they would show better adaptation to demanding work under high task control. In contrast, as highly prevention-focused individuals are oriented toward safety and responsibility they were expected to show better adaptation under low task control. Participants (N = 110) completed a measure of trait regulatory focus and then three trials of a demanding inbox activity under either low, neutral, or high task control. Heart rate variability (HRV), affective reactions (anxiety & task dissatisfaction), and task performance were measured at each trial. As predicted, highly promotion-focused individuals found high (compared to neutral) task control stress-buffering for performance. Moreover, highly prevention-focused individuals found high (compared to low) task control stress-exacerbating for dissatisfaction. In addition, highly prevention-focused individuals found low task control stress-buffering for dissatisfaction, performance, and HRV. However, these effects of low task control for highly prevention-focused individuals depended on their promotion focus.
Resumo:
Fear-related illnesses such as post-traumatic stress disorder (PTSD) impose a tremendous burden on individual quality of life, families, and the national economy. In the military population, 17-20% of services members returning from deployment are diagnosed with PTSD. While treatments have improved for PTSD and are helpful for some, many people continue to suffer despite therapy. The aim of this research is to examine fear memory behaviourally and at the cellular level in the amygdala by using a unique inter-cross strain of high and low fear phenotype mice. An extended outcross C57BL/6J x DBA/2J (F8) are selected for high or low Pavlovian fear memory to context and cue. On presentation of either the original learning context or the cue (tone) mice display high or low levels of freezing as a behavioural measure of fear. In order to identify key aspects of the cellular basis of this difference in fear memory behaviour we are making measurements of protein levels and neuron numbers of a known pathway involved in the consolidation of a long term fear memory (pMAPK). Ongoing studies aim to determine if high fear behaviour is associated with differential signalling in the lateral amygdala compared to low fear behaviour. Additionally, by blocking this pathway in the lateral amygdala (LA), we aim to reduce fear behaviour following Pavlovian fear conditioning. This research will help to unravel the cellular mechanisms underlying high fear behaviour and advance the field toward targeted treatment and improved outcomes, ultimately improving human quality of life.
Resumo:
Problem addressed Wrist-worn accelerometers are associated with greater compliance. However, validated algorithms for predicting activity type from wrist-worn accelerometer data are lacking. This study compared the activity recognition rates of an activity classifier trained on acceleration signal collected on the wrist and hip. Methodology 52 children and adolescents (mean age 13.7 +/- 3.1 year) completed 12 activity trials that were categorized into 7 activity classes: lying down, sitting, standing, walking, running, basketball, and dancing. During each trial, participants wore an ActiGraph GT3X+ tri-axial accelerometer on the right hip and the non-dominant wrist. Features were extracted from 10-s windows and inputted into a regularized logistic regression model using R (Glmnet + L1). Results Classification accuracy for the hip and wrist was 91.0% +/- 3.1% and 88.4% +/- 3.0%, respectively. The hip model exhibited excellent classification accuracy for sitting (91.3%), standing (95.8%), walking (95.8%), and running (96.8%); acceptable classification accuracy for lying down (88.3%) and basketball (81.9%); and modest accuracy for dance (64.1%). The wrist model exhibited excellent classification accuracy for sitting (93.0%), standing (91.7%), and walking (95.8%); acceptable classification accuracy for basketball (86.0%); and modest accuracy for running (78.8%), lying down (74.6%) and dance (69.4%). Potential Impact Both the hip and wrist algorithms achieved acceptable classification accuracy, allowing researchers to use either placement for activity recognition.