420 resultados para Elastic properties


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Non-linear finite deformations of articular cartilages under physiological loading conditions can be attributed to hyperelastic behavior. This paper contains experimental results of indentation tests in finite deformation and proposes an empirical based new generalized hyperelastic constitutive model to account for strain-rate dependency for humeral head cartilage tissues. The generalized model is based on existing hyperelastic constitutive relationships that are extensively used to represent biological tissues in biomechanical literature. The experimental results were obtained for three loading velocities, corresponding to low (1x10-3 s-1), moderate and high strain-rates (1x10-1 s-1), which represent physiological loading rates that are experienced in daily activities such as lifting, holding objects and sporting activities. Hyperelastic material parameters were identified by non linear curve fitting procedure. Analysis demonstrated that the material behavior of cartilage can be effectively decoupled into strain-rate independent(elastic) and dependent parts. Further, experiments conducted using different indenters indicated that the parameters obtained are significantly affected by the indenter size, potentially due to structural inhomogeneity of the tissue. The hyperelastic constitutive model developed in this paper opens a new avenue for the exploration of material properties of cartilage tissues.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Red Blood Cells (RBCs) exhibit different types of motions and different deformed shapes, when they move through capillaries. RBCs can travel through capillaries having smaller diameters than RBCs’ diameter, due to the capacity of high deformability of the viscoelastic RBC membrane. The motion and the steady state shape of the RBCs depend on many factors, such as the geometrical parameters of the microvessel through which blood flows, the RBC membrane bending stiffness and the flow velocity. In this study, the effect of the RBC’s membrane stiffness on the deformation of a single RBC in a stenosed capillary is comprehensively examined. Smoothed Particle Hydrodynamics (SPH) in combination with the two-dimensional spring network membrane model is used to investigate the motion and the deformation property of the RBC. The simulation results demonstrate that the membrane bending stiffness of the RBC has a significant impact on the RBCs’ deformability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Near-infrared spectroscopy (NIRS) calibrations were developed for the discrimination of Chinese hawthorn (Crataegus pinnatifida Bge. var. major) fruit from three geographical regions as well as for the estimation of the total sugar, total acid, total phenolic content, and total antioxidant activity. Principal component analysis (PCA) was used for the discrimination of the fruit on the basis of their geographical origin. Three pattern recognition methods, linear discriminant analysis, partial least-squares-discriminant analysis, and back-propagation artificial neural networks, were applied to classify and compare these samples. Furthermore, three multivariate calibration models based on the first derivative NIR spectroscopy, partial least-squares regression, back-propagation artificial neural networks, and least-squares-support vector machines, were constructed for quantitative analysis of the four analytes, total sugar, total acid, total phenolic content, and total antioxidant activity, and validated by prediction data sets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The common goal of tissue engineering is to develop substitutes that can closely mimic the structure of extracellular matrix (ECM). However, similarly important is the intensive material properties which have often been overlooked, in particular, for soft tissues that are not to bear load assumingly. The mechanostructural properties determine not only the structural stability of biomaterials but also their physiological functionality by directing cellular activity and regulating cell fate decision. The aim here is to emphasize that cells could sense intensive material properties like elasticity and reside, proliferate, migrate and differentiate accordinglyno matter if the construct is from a natural source like cartilage, skin etc. or of synthetic one. Meanwhile, the very objective of this work is to provide a tunable scheme for manipulating the elasticity of collagen-based constructs to be used to demonstrate how to engineer cell behavior and regulate mechanotransduction. Articular cartilage was chosen as it represents one of the most complex hierarchical arrangements of collagen meshwork in both connective tissues and ECM-like biomaterials. Corona discharge treatment was used to produce constructs with varying density of crosslinked collagen and stiffness accordingly. The results demonstrated that elastic modulus increased up to 33% for samples treated up to one minute as crosslink density was found to increase with exposure time. According to the thermal analysis, longer exposure to corona increased crosslink density as the denaturation enthalpy increased. However the spectroscopy results suggested that despite the stabilization of the collagen structure the integrity of the triple helical structure remained intact. The in vitro superficial culture of heterologous chondrocytes also determined that the corona treatment can modulate migration with increased focal adhesion of cells due to enhanced stiffness, without cytotoxicity effects, and providing the basis for reinforcing three-dimensional collagen-based biomaterials in order to direct cell function and mediate mechanotransduction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates the potential of pulsed power to sterilize hard and soft tissues and its impact on their physico-mechanical properties. It hypothesizes that pulsed plasma can sterilize both vascular and avascular tissues and the transitive layers in between without deleterious effects on their functional characteristics. Cartilage/bone laminate was chosen as a model to demonstrate the concept, treated at low temperature, at atmospheric pressure, in short durations and in buffered environment using a purposed-built pulsed power unit. Input voltage and time of exposure were assigned as controlling parameters in a full factorial design of experiment to determine physical and mechanical alteration pre- and post-treatment. The results demonstrated that, discharges of 11 kV sterilized samples in 45 s, reducing intrinsic elastic modules from 1.4 ± 0.9 to 0.9 ± 0.6 MPa. There was a decrease of 14.1 % in stiffness and 27.8 % in elastic-strain energy for the top quartile. Mechanical impairment was directly proportional to input voltage (P value < 0.05). Bacterial inactivation was proportional to treatment time for input voltages above 32 V (P < 0.001; R Sq = 0.98). Thermal analysis revealed that helix-coil transition decelerated with exposure time and collagen fibrils were destabilized as denaturation enthalpy reduced by 200 μV. We concluded by presenting a safe operating threshold for pulsed power plasma as a feasible protocol for effective sterilization of connective tissues with varying level of loss in mechanical robustness which we argue to be acceptable in certain medical and tissue engineering application.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study cell wall properties; moisture distribution, stiffness, thickness and cell dimension have been taken into consideration. Cell wall stiffness dependent on complex combination of plant cell microstructures, composition and water holding capacity of the cell. In this work, some preliminary steps taken by investing cell wall properties of apple in order to predict change of porosity and shrinkage during drying. Two different types of apple cell wall characteristic were investigated to correlate with porosity and shrinkage after convective drying. A scanning electron microscope (SEM), 2N Intron, a pyncometer and image J software were used in order to measure and analyze cell characteristics, water dynamics, porosity and shrinkage. Cell stiffness of red delicious apple was found higher than granny smith apples. A significant relationship has found between cell wall characteristics and both heat and mass transfer. Consequently, evolution of porosity and shrinkage noticeably influenced during convective drying by the nature of cell wall. This study has brought better understanding of porosity and shrinkage of dried food stuff in microscopic (cell) level and would provide better insight to attain energy effective drying process and quality food stuff.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A numerical procedure based on the plastic hinge concept for study of the structural behaviour of steel framed structures exposed to fire is described. Most previous research on fire analysis considered the structural performance due to rising temperature. When strain reversal occurs during the cooling phase, the stress–strain curve is different. The plastic deformation is incorporated into the stress–strain curve to model the strain reversal effect in which unloading under elastic behaviour is allowed. This unloading response is traced by the incremental–iterative Newton–Raphson method. The mechanical properties of the steel member in the present fire analysis follows both Eurocode 3 Part 1.2 and BS5950 Part 8, which implicitly allow for thermal creep deformation. This paper presents an efficient fire analysis procedure for predicting thermal and cooling effects on an isolated element and a multi-storey frame. Several numerical and experimental examples related to structural behaviour in cooling phase are studied and compared with results obtained by other researchers. The proposed method is effective in the fire safety design and analysis of a building in a real fire scenario. The scope of investigation is of great significance since a large number of rescuers would normally enter a fire site as soon as the fire is extinguished and during the cooling phase, so a structural collapse can be catastrophic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a higher-order beam-column formulation that can capture the geometrically non-linear behaviour of steel framed structures which contain a multiplicity of slender members. Despite advances in computational frame software, analyses of large frames can still be problematic from a numerical standpoint and so the intent of the paper is to fulfil a need for versatile, reliable and efficient non-linear analysis of general steel framed structures with very many members. Following a comprehensive review of numerical frame analysis techniques, a fourth-order element is derived and implemented in an updated Lagrangian formulation, and it is able to predict flexural buckling, snap-through buckling and large displacement post-buckling behaviour of typical structures whose responses have been reported by independent researchers. The solutions are shown to be efficacious in terms of a balance of accuracy and computational expediency. The higher-order element forms a basis for augmenting the geometrically non-linear approach with material non-linearity through the refined plastic hinge methodology described in the companion paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Finite element frame analysis programs targeted for design office application necessitate algorithms which can deliver reliable numerical convergence in a practical timeframe with comparable degrees of accuracy, and a highly desirable attribute is the use of a single element per member to reduce computational storage, as well as data preparation and the interpretation of the results. To this end, a higher-order finite element method including geometric non-linearity is addressed in the paper for the analysis of elastic frames for which a single element is used to model each member. The geometric non-linearity in the structure is handled using an updated Lagrangian formulation, which takes the effects of the large translations and rotations that occur at the joints into consideration by accumulating their nodal coordinates. Rigid body movements are eliminated from the local member load-displacement relationship for which the total secant stiffness is formulated for evaluating the large member deformations of an element. The influences of the axial force on the member stiffness and the changes in the member chord length are taken into account using a modified bowing function which is formulated in the total secant stiffness relationship, for which the coupling of the axial strain and flexural bowing is included. The accuracy and efficiency of the technique is verified by comparisons with a number of plane and spatial structures, whose structural response has been reported in independent studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The traditional structural design procedure, especially for the large-scale and complex structures, is time consuming and inefficient. This is due primarily to the fact that the traditional design takes the second-order effects indirectly by virtue of design specifications for every member instead of system analysis for a whole structure. Consequently, the complicated and tedious design procedures are inevitably necessary to consider the second-order effects for the member level in design specification. They are twofold in general: 1) Flexural buckling due to P-d effect, i.e. effective length. 2) Sway effect due to P-D effect, i.e. magnification factor. In this study, a new system design concept based on the second-order elastic analysis is presented, in which the second-order effects are taken into account directly in the system analysis, and also to avoid the tedious member-by-member stability check. The plastic design on the basis of this integrated method of direct approach is ignored in this paper for simplicity and clarity, as the only emphasis is placed on the difference between the second-order elastic limit-state design and present system design approach. A practical design example, a 57m-span dome steel skylight structure, is used to demonstrate the efficiency and effectiveness of the proposed approach. This skylight structure is also designed by the traditional design approach BS5950-2000 for comparison on which the emphasis of aforementioned P-d and P-D effects is placed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Family Attitude Scale (FAS) is a self-report measure of critical or hostile attitudes and behaviors towards another family member, and demonstrates an ability to predict relapse in psychoses. Data are not currently available on a French version of the scale. The present study developed a French version of the FAS, using a large general population sample to test its internal structure, criterion validity and relationships with the respondents' symptoms and psychiatric diagnoses, and examined the reciprocity of FAS ratings by respondents and their partners. A total of 2072 adults from an urban population undertook a diagnostic interview and completed self-report measures, including an FAS about their partner. A subset of participants had partners who also completed the FAS. Confirmatory factor analyses revealed an excellent fit by a single-factor model, and the FAS demonstrated a strong association with dyadic adjustment. FAS scores of respondents were affected by their anxiety levels and mood, alcohol and anxiety diagnoses, and moderate reciprocity of attitudes and behaviors between the partners was seen. The French version of the FAS has similarly strong psychometric properties to the original English version. Future research should assess the ability of the French FAS to predict relapse of psychiatric disorders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Graphene has been reported with record-breaking properties which have opened up huge potential applications. A considerable research has been devoted to manipulate or modify the properties of graphene to target a more smart nanoscale device. Graphene and carbon nanotube hybrid structure (GNHS) is one of the promising graphene derivates, while their mechanical properties have been rarely discussed in literature. Therefore, such a studied is conducted in this paper basing on the large-scale molecular dynamics simulation. The target GNHS is constructed by considering two separate graphene layers that being connected by single-wall carbon nanotubes (SWCNTs) according to the experimental observations. It is found that the GNHSs exhibit a much lower yield strength, Young’s modulus, and earlier yielding comparing with a bilayer graphene sheet. Fracture of studied GNHSs is found to fracture located at the connecting region between carbon nanotubes (CNTs) and graphene. After failure, monatomic chains are normally observed at the front of the failure region, and the two graphene layers at the failure region without connecting CNTs will adhere to each other, generating a bilayer graphene sheet scheme (with a layer distance about 3.4 Å). This study will enrich the current understanding of the mechanical performance of GNHS, which will guide the design of GNHS and shed lights on its various applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tubular members have become progressively more popular due to excellent structural properties, aesthetic appearance, corrosion and fire protection capability. However, a large number of such structures are found structurally deficient due to reduction of strength when they expose to severe environmental conditions such as marine environment, cold and hot weather. Hence strengthening and retrofitting of structural members are in high demands. In recent times Carbon Fibre Reinforced Polymers (CFRP) composites appears to be an excellent solution to enhance the load carrying capacity and serviceability of steel structures because of its superior physical and mechanical properties. However, the durability of such strengthening system under cold environmental condition has not yet been well documented to guide the engineers. This paper presents the findings of a study conducted to enhance the bond durability of CFRP strengthened steel tubular members by treating steel surface using epoxy based adhesion promoter under cold weather subjected to bending. The experimental program consisted of six number of CFRP strengthened specimens and one bare specimen. The sand blasted surface of the three specimens to be strengthened was pre-treated with MBrace primer and other three were remained untreated and then cured under ambient temperature and cold weather (3oC) for three and six months period of time. The beams were then loaded to failure under four point bending. The structural response of each specimen was predicted in terms of failure mode, failure load and mid-span deflection. The research findings show that the cold weather immersion had an adverse effect on durability of CFRP strengthened structures. Moreover, the epoxy based adhesion promoter was found to enhance the bond durability in elastic range.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

MapReduce is a computation model for processing large data sets in parallel on large clusters of machines, in a reliable, fault-tolerant manner. A MapReduce computation is broken down into a number of map tasks and reduce tasks, which are performed by so called mappers and reducers, respectively. The placement of the mappers and reducers on the machines directly affects the performance and cost of the MapReduce computation in cloud computing. From the computational point of view, the mappers/reducers placement problem is a generation of the classical bin packing problem, which is NP-complete. Thus, in this paper we propose a new heuristic algorithm for the mappers/reducers placement problem in cloud computing and evaluate it by comparing with other several heuristics on solution quality and computation time by solving a set of test problems with various characteristics. The computational results show that our heuristic algorithm is much more efficient than the other heuristics and it can obtain a better solution in a reasonable time. Furthermore, we verify the effectiveness of our heuristic algorithm by comparing the mapper/reducer placement for a benchmark problem generated by our heuristic algorithm with a conventional mapper/reducer placement which puts a fixed number of mapper/reducer on each machine. The comparison results show that the computation using our mapper/reducer placement is much cheaper than the computation using the conventional placement while still satisfying the computation deadline.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of aza-boron-diquinomethene (aza-BODIQU) complexes with different aryl-substituents (B1–B6) were synthesized and characterized. Their photophysical properties were investigated systematically via spectroscopic and theoretical methods. All complexes exhibit strong 1π–π* absorption bands and intense fluorescent emission bands in the visible spectral region at room temperature. The fluorescence spectra in solution show the mirror image features of the S0→S1 absorption bands, which can be assigned to the 1π–π*/1ICT (intramolecular charge transfer) emitting states. Except for B6, all complexes exhibit high photoluminescence quantum yields (ΦPL = 0.47–0.93). The spectroscopic studies and theoretical calculations indicate that the photophysical properties of these aza-BODIQUs can be tuned by the appended aryl-substituents, which would be useful for rational design of boron–fluorine complexes with high emission quantum yield for organic light-emitting applications.