297 resultados para Coordination urbanisme-transport


Relevância:

20.00% 20.00%

Publicador:

Resumo:

To deliver tangible sustainability outcomes, the infrastructure sector of the construction industry needs to build capacities for the creation, application and management of ever increasing knowledge. This paper intends to establish the importance and key issues of promoting sustainability through knowledge management (KM). It presents a new conceptual framework for managing sustainability knowledge to raise the awareness and direct future research in the field of transport infrastructure, one of the fast growing sectors in Australia. A holistic KM approach is adopted in this research to consider the potential to “deliver the right information to the right person at the right time” in the context of sustainable development of infrastructure. A questionnaire survey among practitioners across the nation confirmed the necessity and identified priority issues of managing knowledge for sustainability. During infrastructure development, KM can help build much needed industry consensus, develop capacity, communicate decisions, and promote specific measures for the pursuit of sustainability. Six essential elements of the KM approach and their priority issues informed the establishment of a conceptual KM framework. The transport infrastructure sector has come to realise that development must not come at the expense of environmental and social objectives. In practice however, it is facing extensive challenges to deliver what has been promised in the sustainability agenda. This research demonstrates the importance of managing sustainability knowledge, integration of various stakeholders, facilitation of plans and actions and delivery of tangible benefits in real projects, as a positive step towards meeting these challenges.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Queensland Transport Industry Workplace Health Intervention project was a Participatory Action Research (PAR) project to investigate the effectiveness of workplace-based nutrition and physical activity health promotion interventions for truck drivers in transport industry workplaces in south-east Queensland. The project was conducted by a research team at the Queensland University of Technology (QUT), and was funded by the Queensland Government under the Healthier.Happier.Workplaces initiative.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper is concerned with the interfacial thermal resistance for polymer composites reinforced by various covalently functionalised graphene. By using molecular dynamics simulations, the obtained results show that the covalent functionalisation in graphene plays a significant role in reducing the graphene-paraffin interfacial thermal resistance. This reduction is dependent on the coverage and type of functional groups. Among the various functional groups, butyl is found to be the most effective in reducing the interfacial thermal resistance, followed by methyl, phenyl and formyl. The other functional groups under consideration such as carboxyl, hydroxyl and amines are found to produce negligible reduction in the interfacial thermal resistance. For multilayer graphene with a layer number up to four, the interfacial thermal resistance is insensitive to the layer number. The effects of the different functional groups and the layer number on the interfacial thermal resistance are also elaborated using the vibrational density of states of the graphene and the paraffin matrix. The present findings provide useful guidelines in the application of functionalised graphene for practical thermal management.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Roads and road infrastructure will be faced with multiple challenges over the coming decades – challenges that in many ways bear little resemblance to those previously faced - and as such will require new approaches. The opportunity exists to transform the way road infrastructure is conceived and constructed, as a key part of the process of assisting society to respond to climate change and reduce other environmental pressures. Innovations in road construction, use and management in order to manage these changes can now be seen. Scenario planning is one tool that can take into account emerging challenges, develop or adopt new approaches, and thus help this transformation to occur. The paper explores scenario planning methodologies, global innovations and trends in road construction and maintenance and the findings from stakeholder workshops in Brisbane and Perth. It highlights key opportunities for road agencies to use scenarios to enable planning that, in the face of future uncertainties, facilitates appropriate responses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Understanding how different socioeconomic indicators are associated with transport modes provide insight into which interventions might contribute to reducing socioeconomic inequalities in health. The purpose of this study was to examine associations between neighbourhood-level socioeconomic disadvantage, individual-level socioeconomic position (SEP) and usual transport mode. Methods This investigation included 11,036 residents from 200 neighbourhoods in Brisbane, Australia. Respondents self-reported their usual transport mode (car or motorbike, public transport, walking or cycling). Indicators for individual-level SEP were education, occupation, and household income; and neighbourhood disadvantage was measured using a census-derived index. Data were analysed using multilevel multinomial logistic regression. High SEP respondents and residents of the most advantaged neighbourhoods who used a private motor vehicle as their usual form of transport was the reference category. Results Compared with driving a motor vehicle, the odds of using public transport were higher for white collar employees (OR1.68, 95%CrI 1.41-2.01), members of lower income households (OR 1.71 95%CrI 1.25-2.30), and residents of more disadvantaged neighbourhoods (OR 1.93, 95%CrI 1.46-2.54); and lower for respondents with a certificate-level education (OR 0.60, 95%CrI 0.49-0.74) and blue collar workers (OR 0.63, 95%CrI 0.50-0.81). The odds of walking for transport were higher for the least educated (OR 1.58, 95%CrI 1.18-2.11), those not in the labour force (OR 1.94, 95%CrI 1.38-2.72), members of lower income households (OR 2.10, 95%CrI 1.23-3.64), and residents of more disadvantaged neighbourhoods (OR 2.73, 95%CrI 1.46-5.24). The odds of cycling were lower among less educated groups (OR 0.31, 95% CrI 0.19-0.48). Conclusion The relationships between socioeconomic characteristics and transport modes are complex, and provide challenges for those attempting to encourage active forms of transportation. Further work is required exploring the individual- and neighbourhood-level mechanisms behind transport mode choice, and what factors might influence individuals from different socioeconomic backgrounds to change to more active transport modes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Different human activities like combustion of fossil fuels, biomass burning, industrial and agricultural activities, emit a large amount of particulates into the atmosphere. As a consequence, the air we inhale contains significant amount of suspended particles, including organic and inorganic solids and liquids, as well as various microorganism, which are solely responsible for a number of pulmonary diseases. Developing a numerical model for transport and deposition of foreign particles in realistic lung geometry is very challenging due to the complex geometrical structure of the human lung. In this study, we have numerically investigated the airborne particle transport and its deposition in human lung surface. In order to obtain the appropriate results of particle transport and deposition in human lung, we have generated realistic lung geometry from the CT scan obtained from a local hospital. For a more accurate approach, we have also created a mucus layer inside the geometry, adjacent to the lung surface and added all apposite mucus layer properties to the wall surface. The Lagrangian particle tracking technique is employed by using ANSYS FLUENT solver to simulate the steady-state inspiratory flow. Various injection techniques have been introduced to release the foreign particles through the inlet of the geometry. In order to investigate the effects of particle size on deposition, numerical calculations are carried out for different sizes of particles ranging from 1 micron to 10 micron. The numerical results show that particle deposition pattern is completely dependent on its initial position and in case of realistic geometry; most of the particles are deposited on the rough wall surface of the lung geometry instead of carinal region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, we have developed a new efficient hole transport material (HTM) composite based on poly(3- hexylthiophene) (P3HT) and bamboo-structured carbon nanotubes (BCNs) for CH3NH3PbI3 (MAPbI3) based perovskite solar cells. Compared to pristine P3HT, it is found that the crystallinity of P3HT was significantly improved by addition of BCNs, which led to over one order of magnitude higher conductivity for the composite containing 1–2 wt% BCNs in P3HT. In the meantime, the interfacial charge transfer between the MAPbI3 light absorbing layer and the HTM composite layer based on P3HT/BCNs was two-fold faster than pristine P3HT. More importantly, the HTM film with a superior morphological structure consisting of closely compact large grains was achieved with the composite containing 1 wt% BCNs in P3HT. The study by electrochemical impedance spectroscopy has confirmed that the electron recombination in the solar cells was reduced nearly ten-fold with the addition of 1 wt% carbon nanotubes in the HTM composite. Owing to the superior HTM film morphology and the significantly reduced charge recombination, the energy conversion efficiency of the perovskite solar cells increased from 3.6% for pristine P3HT to 8.3% for P3HT/(1 wt% BCNs) with a significantly enhanced open circuit voltage (Voc) and fill factor (FF). The findings of this work are important for development of new HTM for high performance perovskite solar cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aerosol deposition in cylindrical tubes is a subject of interest to researchers and engineers in many applications of aerosol physics and metrology. Investigation of nano-particles in different aspects such as lungs, upper airways, batteries and vehicle exhaust gases is vital due the smaller size, adverse health effect and higher trouble for trapping than the micro-particles. The Lagrangian particle tracking provides an effective method for simulating the deposition of nano-particles as well as micro-particles as it accounts for the particle inertia effect as well as the Brownian excitation. However, using the Lagrangian approach for simulating ultrafine particles has been limited due to computational cost and numerical difficulties. In this paper, the deposition of nano-particles in cylindrical tubes under laminar condition is studied using the Lagrangian particle tracking method. The commercial Fluent software is used to simulate the fluid flow in the pipes and to study the deposition and dispersion of nano-particles. Different particle diameters as well as different flow rates are examined. The point analysis in a uniform flow is performed for validating the Brownian motion. The results show good agreement between the calculated deposition efficiency and the analytic correlations in the literature. Furthermore, for the nano-particles with the diameter more than 40 nm, the calculated deposition efficiency by the Lagrangian method is less than the analytic correlations based on Eulerian method due to statistical error or the inertia effect.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diketopyrrolopyrole-naphthalene polymer (PDPP-TNT), a donor-acceptor co-polymer, has shown versatile behavior demonstrating high performances in organic field-effect transistors (OFETs) and organic photovoltaic (OPV) devices. In this paper we report investigation of charge carrier dynamics in PDPP-TNT, and [6,6]-phenyl C71 butyric acid methyl ester (PC71BM) bulk-heterojunction based inverted OPV devices using current density-voltage (J-V) characteristics, space charge limited current (SCLC) measurements, capacitance-voltage (C-V) characteristics, and impedance spectroscopy (IS). OPV devices in inverted architecture, ITO/ZnO/PDPP-TNT:PC71BM/MoO3/Ag, are processed and characterized at room conditions. The power conversion efficiency (PCE) of these devices are measured ∼3.8%, with reasonably good fill-factor 54.6%. The analysis of impedance spectra exhibits electron’s mobility ∼2 × 10−3 cm2V−1s−1, and lifetime in the range of 0.03-0.23 ms. SCLC measurements give hole mobility of 1.12 × 10−5 cm2V−1s−1, and electron mobility of 8.7 × 10−4 cm2V−1s−1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The two-dimensional coordination polymeric structures of the hydrated potassium and rubidium salts of (3,5-dichlorophenoxy)acetic acid, (3,5-D) namely, poly[mu-aqua-bis[mu3-2-(3,5-dichlorophenoxy)acetato]potassium, [K2(C8H5Cl2O3)2 (H2O)]n (I) and poly[mu-aqua-bis[mu3-2-(3,5-dichlorophenoxy)acetato]dirubidium] [Rb2(C8H5Cl2O3)2 (H2O)]n (II), respectively have been determined and are described. The two compounds are isotypic and the polymer is based on centrosymmetric dinuclear bridged complex units. The irregular six-coordination about the metal centres comprises a bridging water molecule lying on a twofold rotation axis, the phenoxy O-atom donor and and a triple bridging carboxylate O-atom of the oxoacetate side chain of the 3,5-D ligand in a bidentate chelate mode, the second carboxy O-donor, also bridging. The K-O and Rb-O bond-length ranges are 2.7238(15)--2.9459(14) and 2.832(2)--3.050(2) \%A respectively and the K...K and Rb...Rb separations in the dinuclear unit are 4.0214(7) and 4.1289(6) \%A, respectively. Within the two-dimensional layers which lie parallel to (100), the coordinated water molecule forms an O---H...O hydrogen bond to the single bridging carboxylate O atom.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Over the last 30 years, numerous research groups have attempted to provide mathematical descriptions of the skin wound healing process. The development of theoretical models of the interlinked processes that underlie the healing mechanism has yielded considerable insight into aspects of this critical phenomenon that remain difficult to investigate empirically. In particular, the mathematical modeling of angiogenesis, i.e., capillary sprout growth, has offered new paradigms for the understanding of this highly complex and crucial step in the healing pathway. With the recent advances in imaging and cell tracking, the time is now ripe for an appraisal of the utility and importance of mathematical modeling in wound healing angiogenesis research. The purpose of this review is to pedagogically elucidate the conceptual principles that have underpinned the development of mathematical descriptions of wound healing angiogenesis, specifically those that have utilized a continuum reaction-transport framework, and highlight the contribution that such models have made toward the advancement of research in this field. We aim to draw attention to the common assumptions made when developing models of this nature, thereby bringing into focus the advantages and limitations of this approach. A deeper integration of mathematical modeling techniques into the practice of wound healing angiogenesis research promises new perspectives for advancing our knowledge in this area. To this end we detail several open problems related to the understanding of wound healing angiogenesis, and outline how these issues could be addressed through closer cross-disciplinary collaboration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of tunnel junction resistances on the electronic property and the magneto-resistance of few-layer graphene sheet networks is investigated. By decreasing the tunnel junction resistances, transition from strong localization to weak localization occurs and magneto-resistance changes from positive to negative. It is shown that the positive magneto-resistance is due to Zeeman splitting of the electronic states at the Fermi level as it changes with the bias voltage. As the tunnel junction resistances decrease, the network resistance is well described by 2D weak localization model. Sensitivity of the magneto-resistance to the bias voltage becomes negligible and diminishes with increasing temperature. It is shown 2D weak localization effect mainly occurs inside of the few-layer graphene sheets and the minimum temperature of 5 K in our experiments is not sufficiently low to allow us to observe 2D weak localization effect of the networks as it occurs in 2D disordered metal films. Furthermore, defects inside the few-layer graphene sheets have negligible effect on the resistance of the networks which have small tunnel junction resistances between few-layer graphene sheets

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objectives of this study were to determine the impact of different instructional constraints on standing board jump (sbj) performance in children and understand the underlying changes in emergent movement patterns. Two groups of novice participants were provided with either externally or internally focused attentional instructions during an intervention phase. Pre- and post-test sessions were undertaken to determine changes to performance and movement patterns. Thirty-six primary fourth-grade male students were recruited for this study and randomly assigned to either an external, internal focus or control group. Different instructional constraints with either an external focus (image of the achievement) or an internal focus (image of the act) were provided to the participants. Performance scores (jump distances), and data from key kinematic (joint range of motion, ROM) and kinetic variables (jump impulses) were collected. Instructional constraints with an emphasis on an external focus of attention were generally more effective in assisting learners to improve jump distances. Intra-individual analyses highlighted how enhanced jump distances for successful participants may be concomitant with specific changes to kinematic and kinetic variables. Larger joint ROM and adjustment to a comparatively larger horizontal impulse to a vertical impulse were observed for more successful participants at post-test performance. From a constraints-led perspective, the inclusion of instructional constraints encouraging self-adjustments in the control of movements (i.e., image of achievement) had a beneficial effect on individuals performing the standing broad jump task. However, the advantage of using an external focus of attentional instructions could be task- and individual-specific.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The two-dimensional polymeric structures of the caesium complexes with the phenoxyacetic acid analogues (4-fluorophenoxy)acetic acid, (3-chloro-2-methylphenoxy)acetic acid and the herbicidally active (2,4-dichlorophen­oxy)acetic acid (2,4-D), namely poly[[5-(4-fluorophenoxy)acetato][4-(4-fluorophenoxy)acetato]dicaesium], [Cs2(C8H6FO3)2]n, (I), poly[aqua[5-(3-chloro-2-methylphenoxy)acetato]caesium], [Cs(C9H8ClO3)(H2O)]n, (II), and poly[[7-(2,4-di­chlorophenoxy)acetato][(2,4-dichlorphenoxy)acetic acid]caesium], [Cs(C8H5Cl2O3)(C8H6Cl2O3)]n, (III), are described. In (I), the Cs+ cations of the two individual irregular coordination polyhedra in the asymmetric unit (one CsO7 and the other CsO8) are linked by bridging carboxylate O-atom donors from the two ligand molecules, both of which are involved in bidentate chelate Ocarboxy,Ophenoxy interactions, while only one has a bidentate carboxylate O,O'-chelate inter­action. Polymeric extension is achieved through a number of carboxylate O-atom bridges, with a minimum CsCs separation of 4.3231 (9) Å, giving layers which lie parallel to (001). In hydrated complex (II), the irregular nine-coordination about the Cs+ cation comprises a single monodentate water molecule, a bidentate Ocarboxy,Ophenoxy chelate interaction and six bridging carboxylate O-atom bonding interactions, giving a CsCs separation of 4.2473 (3) Å. The water mol­ecule forms intralayer hydrogen bonds within the two-dimensional layers, which lie parallel to (100). In complex (III), the irregular centrosymmetric CsO6Cl2 coordination environment comprises two O-atom donors and two ring-substituted Cl-atom donors from two hydrogen bis[(2,4-dichlorophenoxy)acetate] ligand species in a bidentate chelate mode, and four O-atom donors from bridging carboxyl groups. The duplex ligand species lie across crystallographic inversion centres, linked through a short O-HO hydrogen bond involving the single acid H atom. Structure extension gives layers which lie parallel to (001). The present set of structures of Cs salts of phenoxyacetic acids show previously demonstrated trends among the alkali metal salts of simple benzoic acids with no stereochemically favourable interactive substituent groups for formation of two-dimensional coordination polymers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Research on 1vs1 sub-phases in team sports has shown how one player coordinates his/her actions with his/her opponent and the location of a target/goal to attain performance objectives. In this study, we extended this approach to analysis of 5vs5 competitive performance in the team sport of futsal to provide a performance analysis framework that explains how players coordinate their actions to create/prevent opportunities to score goals. For this purpose, we recorded all 10 futsal matches of the 2009 Lusophony Games held in Lisbon. We analysed the displacement trajectories of a shooting attacker and marking defender in plays ending in a goal, a goalkeeper's save, and a defender's interception, at four specific moments during performance: (1) assisting attacker's ball reception; (2) moment of passing; (3) shooter's ball reception, and; (4) shot on goal. Statistical analysis showed that when a goal was scored, the defender's angle to the goal and to the attacker tended to decrease, the attacker was able to move to the same distance to the goal alongside the defender, and the attacker was closer to the defender and moving at the same velocity (at least) as the defender. This study identified emergent patterns of coordination between attackers and defenders under key competitive task constraints, such as the location of the goal, which supported successful performance in futsal.