608 resultados para Bone development
Resumo:
Areal bone mineral density (aBMD) is the most common surrogate measurement for assessing the bone strength of the proximal femur associated with osteoporosis. Additional factors, however, contribute to the overall strength of the proximal femur, primarily the anatomical geometry. Finite element analysis (FEA) is an effective and widely used computerbased simulation technique for modeling mechanical loading of various engineering structures, providing predictions of displacement and induced stress distribution due to the applied load. FEA is therefore inherently dependent upon both density and anatomical geometry. FEA may be performed on both three-dimensional and two-dimensional models of the proximal femur derived from radiographic images, from which the mechanical stiffness may be redicted. It is examined whether the outcome measures of two-dimensional FEA, two-dimensional, finite element analysis of X-ray images (FEXI), and three-dimensional FEA computed stiffness of the proximal femur were more sensitive than aBMD to changes in trabecular bone density and femur geometry. It is assumed that if an outcome measure follows known trends with changes in density and geometric parameters, then an increased sensitivity will be indicative of an improved prediction of bone strength. All three outcome measures increased non-linearly with trabecular bone density, increased linearly with cortical shell thickness and neck width, decreased linearly with neck length, and were relatively insensitive to neck-shaft angle. For femoral head radius, aBMD was relatively insensitive, with two-dimensional FEXI and threedimensional FEA demonstrating a non-linear increase and decrease in sensitivity, respectively. For neck anteversion, aBMD decreased non-linearly, whereas both two-dimensional FEXI and three dimensional FEA demonstrated a parabolic-type relationship, with maximum stiffness achieved at an angle of approximately 15o. Multi-parameter analysis showed that all three outcome measures demonstrated their highest sensitivity to a change in cortical thickness. When changes in all input parameters were considered simultaneously, three and twodimensional FEA had statistically equal sensitivities (0.41±0.20 and 0.42±0.16 respectively, p = ns) that were significantly higher than the sensitivity of aBMD (0.24±0.07; p = 0.014 and 0.002 for three-dimensional and two-dimensional FEA respectively). This simulation study suggests that since mechanical integrity and FEA are inherently dependent upon anatomical geometry, FEXI stiffness, being derived from conventional two-dimensional radiographic images, may provide an improvement in the prediction of bone strength of the proximal femur than currently provided by aBMD.
Resumo:
In the design of tissue engineering scaffolds, design parameters including pore size, shape and interconnectivity, mechanical properties and transport properties should be optimized to maximize successful inducement of bone ingrowth. In this paper we describe a 3D micro-CT and pore partitioning study to derive pore scale parameters including pore radius distribution, accessible radius, throat radius, and connectivity over the pore space of the tissue engineered constructs. These pore scale descriptors are correlated to bone ingrowth into the scaffolds. Quantitative and visual comparisons show a strong correlation between the local accessible pore radius and bone ingrowth; for well connected samples a cutoff accessible pore radius of approximately 100 microM is observed for ingrowth. The elastic properties of different types of scaffolds are simulated and can be described by standard cellular solids theory: (E/E(0))=(rho/rho(s))(n). Hydraulic conductance and diffusive properties are calculated; results are consistent with the concept of a threshold conductance for bone ingrowth. Simple simulations of local flow velocity and local shear stress show no correlation to in vivo bone ingrowth patterns. These results demonstrate a potential for 3D imaging and analysis to define relevant pore scale morphological and physical properties within scaffolds and to provide evidence for correlations between pore scale descriptors, physical properties and bone ingrowth.
Resumo:
Application of cell-–biomaterial systems in regenerative medicine can be facilitated by their successful low temperature preservation. Vitrification, which avoids ice crystal formation by amorphous solidification, is an emerging approach to cryopreservation. Developing vitrification strategy, effective cryopreservation of alginate–fibrin beads with porcine mesenchymal stromal cells has been achieved in this study. The cell–biomaterial constructs were pre-cultured for 20 days before cryopreservation, allowing for cell proliferation and construct stabilization. Ethylene glycol (EG) was employed as the basic cryoprotectant for two equilibration solutions. Successful cryopreservation of the constructs was achieved using vitrification solution composed of penetrating (EG MW 62 Da) and non-penetrating (sucrose MW 342 Da) cryoprotectants. Stepwise procedure of introduction to and removal of cryoprotectants was brief; direct plunging into liquid nitrogen was applied. Cell viability, evaluated by combining live/death staining and confocal laser microscopy, was similar for both control and vitrified cells in the beads. No detectable damage of microstructure of cryopreserved beads was found as shown by scanning electron microscopy. Both osteogenically induced control and vitrified cells in the constructs were equally capable of mineral production and deposition. There was no statistically significant difference in metabolic activity and proliferation between both groups during the entire culture period. Our study leads to the conclusion that the developed cryopreservation protocol allowed to maintain the integrity of the beads while preserving the ability of the pig bone marrow derived mesenchymal stromal cells to proliferate and subsequently differentiate; demonstrating that vitrification is a promising approach for cryopreser-vation of “ready-to-use” cell–biomaterial constructs.
Resumo:
Computer aided joint replacement surgery has become very popular during recent years and is being done in increasing numbers all over the world. The accuracy of the system depends to a major extent, on accurate registration and immobility of the tracker attachment devices to the bone. This study was designed to asses the forces needed to displace the tracker attachment devices in the bone simulators. Bone simulators were used to maintain the uniformity of the bone structure during the study. The fixation devices tested were 3mm diameter self drilling, self tapping threaded pin, 4mm diameter self tapping cortical threaded pin, 5mm diameter self tapping cancellous threaded pin and a triplanar fixation device ‘ortholock’ used with three 3mm pins. All the devices were tested for pull out, translational and rotational forces in unicortical and bicortical fixation modes. Also tested was the normal bang strength and forces generated by leaning on the devices. The forces required to produce translation increased with the increasing diameter of the pins. These were 105N, 185N, and 225N for the unicortical fixations and 130N, 200N, 225N for the bicortical fixations for 3mm, 4mm and 5mm diameter pins respectively. The forces required to pull out the pins were 1475N, 1650N, 2050N for the unicortical, 1020N, 3044N and 3042N for the bicortical fixated 3mm, 4mm and 5mm diameter pins. The ortholock translational and pull out strength was tested to 900N and 920N respectively and still it did not fail. Rotatory forces required to displace the tracker on pins was to the magnitude of 30N before failure. The ortholock device had rotational forces applied up to 135N and still did not fail. The manual leaning forces and the sudden bang forces generated were of the magnitude of 210N and 150N respectively. The strength of the fixation pins increases with increasing diameter from three to five mm for the translational forces. There is no significant difference in pull out forces of four mm and five mm diameter pins though it is more that the three mm diameter pins. This is because of the failure of material at that stage rather than the fixation device. The rotatory forces required to displace the tracker are very small and much less that that can be produced by the surgeon or assistants in single pins. Although the ortholock device was tested to 135N in rotation without failing, one has to be very careful not to put any forces during the operation on the tracker devices to ensure the accuracy of the procedure.
Resumo:
Since the 1960s, numerous studies on problem solving have revealed the complexity of the domain and the difficulty in translating research findings into practice. The literature suggests that the impact of problem solving research on the mathematics curriculum has been limited. Furthermore, our accumulation of knowledge on the teaching of problem solving is lagging. In this first discussion paper we initially present a sketch of 50 years of research on mathematical problem solving. We then consider some factors that have held back problem solving research over the past decades and offer some directions for how we might advance the field. We stress the urgent need to take into account the nature of problem solving in various arenas of today’s world and to accordingly modernize our perspectives on the teaching and learning of problem solving and of mathematical content through problem solving. Substantive theory development is also long overdue—we show how new perspectives on the development of problem solving expertise can contribute to theory development in guiding the design of worthwhile learning activities. In particular, we explore a models and modeling perspective as an alternative to existing views on problem solving.
Resumo:
This paper is the second in a pair that Lesh, English, and Fennewald will be presenting at ICME TSG 19 on Problem Solving in Mathematics Education. The first paper describes three shortcomings of past research on mathematical problem solving. The first shortcoming can be seen in the fact that knowledge has not accumulated – in fact it has atrophied significantly during the past decade. Unsuccessful theories continue to be recycled and embellished. One reason for this is that researchers generally have failed to develop research tools needed to reliably observe, document, and assess the development of concepts and abilities that they claim to be important. The second shortcoming is that existing theories and research have failed to make it clear how concept development (or the development of basic skills) is related to the development of problem solving abilities – especially when attention is shifted beyond word problems found in school to the kind of problems found outside of school, where the requisite skills and even the questions to be asked might not be known in advance. The third shortcoming has to do with inherent weaknesses in observational studies and teaching experiments – and the assumption that a single grand theory should be able to describe all of the conceptual systems, instructional systems, and assessment systems that strongly molded and shaped by the same theoretical perspectives that are being used to develop them. Therefore, this paper will describe theoretical perspectives and methodological tools that are proving to be effective to combat the preceding kinds or shortcomings. We refer to our theoretical framework as models & modeling perspectives (MMP) on problem solving (Lesh & Doerr, 2003), learning, and teaching. One of the main methodologies of MMP is called multi-tier design studies (MTD).
Resumo:
It is difficult to present a paradigm shift from resource efficient to ecologically sustainable design, when many students have not yet thought about what sustainability is, let alone what it implies for the design of the built environment ‘Positive Development’ requires students to think beyond green building to something that does not yet exist. The concept of ecologically positive development suggests a product, building, system or urban area that leaves the ecological base and public estate better off than if no development had occurred. For some years now, I have experimented with communicating this paradigm shift in design to students and professionals ‐ with mixed results. This paper discusses some of the challenges, failures and successes in shifting design studio work from environmentally‐sensitive to eco-positive. The framework underlying this exploration is action research. Conclusions about the success of the strategies used for overcoming perceptual barriers to new typologies of architecture are drawn from recent student feedback. The talk will show examples of student projects that attempt eco-positive development projects.
Resumo:
The overall purpose of this study was to develop a model to inform the design of professional development programs and the implementation of cooperative learning within Thai primary school mathematics classrooms. Action research design, with interviews, surveys and observations, was used for this study. Survey questionnaires and classroom observations investigated the factors that influence the implementation of cooperative learning strategies and academic achievement in Thai primary school mathematics classrooms. The teachers’ interviews and classroom observation also examined the factors that need to be addressed in teacher professional development programs in order to facilitate cooperative learning in Thai mathematics classrooms. The outcome of this study was a model consisting of two sets of criteria to inform the successful implementation of cooperative learning in Thai primary schools. The first set of criteria was for proposers and developers of professional development programs. This set consists of macro- and micro-level criteria. The macro-level criteria focus on the overall structure of professional development programs and how and when the professional development programs should be implemented. The micro-level criteria focused on the specific topics that need to be included in professional development programs. The second set of criteria was for Thai principals and teachers to facilitate the introduction of cooperative learning in their classrooms. The research outcome also indicated that the attainment of these cooperative learning strategies and skills had a positive impact on the students’ learning of mathematics.
Resumo:
In this chapter we introduce a theoretical framework for studying decision making in sport: the ecological dynamics approach, which we integrate with key ideas from the literature on learning complex motor skills. Our analysis will include insights from Berstein (1967) on the coordination of degrees of freedom and Newell's (1985) model of motor learning. We particularly focus on the role of perceptual degrees of freedom advocated in an ecological approach to learning. In introducing this framework to readers we contrast this perspective with more traditional models of decision-making. Finally, we propose some implications to the training of decision-making skill in sport.
Resumo:
This study aimed to develop and assess the reliability and validity of a pair of self-report questionnaires to measure self-efficacy and expectancy associated with benzodiazepine use, the Benzodiazepine Refusal Self- Efficacy Questionnaire (BRSEQ) and the Benzodiazepine Expectancy Questionnaire (BEQ). Internal structure of the questionnaireswas established by principal component analysis (PCA) in a sample of 155 respondents, and verified by confirmatory factor analyses (CFA) in a second independent sample (n=139) using structural equation modeling. The PCA of the BRSEQ resulted in a 16-item, 4-factor scale, and the BEQ formed an 18-item, 2-factor scale. Both scales were internally reliable. CFA confirmed these internal structures and reduced the questionnaires to a 14-item self-efficacy scale and a 12-item expectancy scale. Lower self-efficacy and higher expectancy were moderately associated with higher scores on the SDS-B. The scales provide reliable measures for assessing benzodiazepine self-efficacy and expectancies. Future research will examine the utility of the scales in prospective prediction of benzodiazepine cessation.
Resumo:
The paper seeks to continue the debate about the need for professionals in the library and information services (LIS) sector to continually engage in career-long learning to sustain and develop their knowledge and skills in a dynamic industry. Aims: The neXus2 workforce study has been funded by the ALIA and the consortium of National and State Libraries Australasia (NSLA). It builds on earlier research work (the neXus census) that looked at the demographic, educational and career perspectives of individual library and information professions, to critically examine institutional policies and practices associated with the LIS workforce. The research aims to develop a clearer understanding of the issues impacting on workforce sustainability, workforce capability and workforce optimisation. Methods: The research methodology involved an extensive online survey conducted in March 2008 which collected data on organisational and general staffing; recruitment and retention; staff development and continuing professional education; and succession planning. Encouragement to participate was provided by key industry groups, including academic, public, health, law and government library and information agencies, with the result that around 150 institutions completed the questionnaire. Results: The paper will specifically discuss the research findings relating to training and professional development, to measure the scope and distribution of training activities across the workforce, to consider the interrelationship between the strategic and operational dimensions of staff development in individual institutions and to analyse the common and distinctive factors evident in the different sectors of the profession. Conclusion: The neXus2 project has successfully engaged LIS institutions in the collection of complex industry data that is relevant to the future education and workforce strategies for all areas of the profession. Cross-sector forums such as Information Online 2009 offer the opportunity for stimulating professional dialogue on the key issues.
Resumo:
Development of an effective preservation strategy to fulfill off-the-shelf availability of tissue-engineered constructs (TECs) is demanded for realizing their clinical potential. In this study, the feasibility of vitrification, ice-free cryopreservation, for precultured ready-to-use TECs was evaluated. To prepare the TECs, bone marrow-derived porcine mesenchymal stromal cells (MSCs) were seeded in polycaprolactone-gelatin nanofibrous scaffolds and cultured for 3 weeks before vitrification treatment. The vitrification strategy developed, which involved exposure of the TECs to low concentrations of cryoprotectants followed by a vitrification solution and sterile packaging in a pouch with its subsequent immersion directly into liquid nitrogen, was accomplished within 11min. Stepwise removal of cryoprotectants, after warming in a 38 degrees C water bath, enabled rapid restoration of the TECs. Vitrification did not impair microstructure of the scaffold or cell viability. No significant differences were found between the vitrified and control TECs in cellular metabolic activity and proliferation on matched days and in the trends during 5 weeks of continuous culture postvitrification. Osteogenic differentiation ability in vitrified and control groups was similar. In conclusion, we have developed a time- and cost-efficient cryopreservation method that maintains integrity of the TECs while preserving MSCs viability and metabolic activity, and their ability to differentiate.
Resumo:
There is no specific self-efficacy measure that has been developed primarily for problem drinkers seeking a moderation drinking goal. In this article, we report the factor structure of a 20-item Controlled Drinking Self-Efficacy Scale (CDSES; Sitharthan et al., 1996; Sitharthan et al., 1997). The results indicate that the CDSES is highly reliable, and the factor analysis using the full sample identified four factors: negative affect, positive mood/social context, frequency of drinking, and consumption quantity. A similar factor structure was obtained for the subsample of men. In contrast, only three factors emerged in the analysis of data on female participants. Compared to women, men had low self-efficacy to control their drinking in situations relating to positive mood/social context, and subjects with high alcohol dependence had low self-efficacy for situations relating to negative affect, social situations, and drinking less frequently. The CDSES can be a useful measure in treatment programs providing a moderation drinking goal.
Resumo:
A shortage of affordable housing is a major problem in Australia today. This is mainly due to the limited supply of affordable housing that is provided by the non-government housing sector. Some private housing developers see the provision of affordable housing for lower income people as a high risk investment which offers a lower return than broader market-based housing. The scarcity of suitable land, a limited government ‘subsidy’, and increasing housing costs have not provided sufficient development incentives to encourage their investment despite the existing high demand for affordable housing. This study analyses the risk management process conducted by some private and not-for-profit housing providers in South East Queensland, and draws conclusions about the relationship between risk assessments/responses and past experiences. In-depth interviews of selected non-government housing providers have been conducted to facilitate an understanding of their approach to risk assessment/response in developing and in managing affordable housing projects. These developers use an informal risk management process as part of their normal business process in accordance with industry standards. A simple qualitative matrix has been used to analyse probability and impacts using a qualitative scale - low, medium and high. For housing providers who have considered investing in affordable housing but have not yet implemented any such projects, affordable housing development is seen as an opportunity that needs to be approached with caution. The risks associated with such projects and the levels of acceptance of these are not consistently identified by current housing providers. Many interviewees agree that the recognition of financial risk and the fear of community rejection of such housing projects have restrained them from committing to such investment projects. This study suggests that implementing improvements to the risk mitigation and management framework may assist in promoting the supply of affordable housing by non-government providers.