264 resultados para Annealing temperature


Relevância:

20.00% 20.00%

Publicador:

Resumo:

After more than twenty years of basic and applied research, the use of nanotechnology in the design and manufacture of nanoscale materials is rapidly increasing, particularly in commercial applications that span from electronics across renewable energy areas, and biomedical devices. Novel polymers are attracting significant attention for they promise to provide a low−cost high−performance alternative to existing materials. Furthermore, these polymers have the potential to overcome limitations imposed by currently available materials thus enabling the development of new technologies and applications that are currently beyond our reach. This work focuses on the development of a range of new low−cost environmentally−friendly polymer materials for applications in areas of organic (flexible) electronics, optics, and biomaterials. The choice of the monomer reflects the environmentally−conscious focus of this project. Terpinen−4−ol is a major constituent of Australian grown Melaleuca alternifolia (tea tree) oil, attributed with the oil's antimicrobial and anti−inflammatory properties. Plasma polymerisation was chosen as a deposition technique for it requires minimal use of harmful chemicals and produces no hazardous by−products. Polymer thin films were fabricated under varied process conditions to attain materials with distinct physico−chemical, optoelectrical, biological and degradation characteristics. The resultant materials, named polyterpenol, were extensively characterised using a number of well−accepted and novel techniques, and their fundamental properties were defined. Polyterpenol films were demonstrated to be hydrocarbon rich, with variable content of oxygen moieties, primarily in the form of hydroxyl and carboxyl functionalities. The level of preservation of original monomer functionality was shown to be strongly dependent on the deposition energy, with higher applied power increasing the molecular fragmentation and substrate temperature. Polyterpenol water contact angle contact angle increased from 62.7° for the 10 W samples to 76.3° for the films deposited at 100 W. Polymers were determined to resist solubilisation by water, due to the extensive intermolecular and intramolecular hydrogen bonds present, and other solvents commonly employed in electronics and biomedical processing. Independent of deposition power, the surface topography of the polymers was shown to be smooth (Rq <0.5 nm), uniform and defect free. Hardness of polyterpenol coatings increased from 0.33 GPa for 10 W to 0.51 GPa for 100 W (at 500 μN load). Coatings deposited at higher input RF powers showed less mechanical deformation during nanoscratch testing, with no considerable damage, cracking or delamination observed. Independent of the substrate, the quality of film adhesion improved with RF power, suggesting these coatings are likely to be more stable and less susceptible to wear. Independent of fabrication conditions, polyterpenol thin films were optically transparent, with refractive index approximating that of glass. Refractive index increased slightly with deposition power, from 1.54 (10 W) to 1.56 (100 W) at 500 nm. The optical band gap values declined with increasing power, from 2.95 eV to 2.64 eV, placing the material within the range for semiconductors. Introduction of iodine impurity reduced the band gap of polyterpenol, from 2.8 eV to 1.64 eV, by extending the density of states more into the visible region of the electromagnetic spectrum. Doping decreased the transparency and increased the refractive index from 1.54 to 1.70 (at 500 nm). At optical frequencies, the real part of permittivity (k) was determined to be between 2.34 and 2.65, indicating a potential low-k material. These permittivity values were confirmed at microwave frequencies, where permittivity increased with input RF energy – from 2.32 to 2.53 (at 10 GHz ) and from 2.65 to 2.83 (at 20 GHz). At low frequencies, the dielectric constant was determined from current−voltage characteristics of Al−polyterpenol−Al devices. At frequencies below 100 kHz, the dielectric constant varied with RF power, from 3.86 to 4.42 at 1 kHz. For all samples, the resistivity was in order of 10⁸−10⁹ _m (at 6 V), confirming the insulating nature of polyterpenol material. In situ iodine doping was demonstrated to increase the conductivity of polyterpenol, from 5.05 × 10⁻⁸ S/cm to 1.20 × 10⁻⁶ S/cm (at 20 V). Exposed to ambient conditions over extended period of time, polyterpenol thin films were demonstrated to be optically, physically and chemically stable. The bulk of ageing occurred within first 150 h after deposition and was attributed to oxidation and volumetric relaxation. Thermal ageing studies indicated thermal stability increased for the films manufactured at higher RF powers, with degradation onset temperature associated with weight loss shifting from 150 ºC to 205 ºC for 10 W and 100 W polyterpenol, respectively. Annealing the films to 405 °C resulted in full dissociation of the polymer, with minimal residue. Given the outcomes of the fundamental characterisation, a number of potential applications for polyterpenol have been identified. Flexibility, tunable permittivity and loss tangent properties of polyterpenol suggest the material can be used as an insulating layer in plastic electronics. Implementation of polyterpenol as a surface modification of the gate insulator in pentacene-based Field Effect Transistor resulted in significant improvements, shifting the threshold voltage from + 20 V to –3 V, enhancing the effective mobility from 0.012 to 0.021 cm²/Vs, and improving the switching property of the device from 10⁷ to 10⁴. Polyterpenol was demonstrated to have a hole transport electron blocking property, with potential applications in many organic devices, such as organic light emitting diodes. Encapsulation of biomedical devices is also proposed, given that under favourable conditions, the original chemical and biological functionality of terpinen−4−ol molecule can be preserved. Films deposited at low RF power were shown to successfully prevent adhesion and retention of several important human pathogens, including P. aeruginosa, S. aureus, and S. epidermidis, whereas films deposited at higher RF power promoted bacterial cell adhesion and biofilm formation. Preliminary investigations into in vitro biocompatibility of polyterpenol demonstrated the coating to be non−toxic for several types of eukaryotic cells, including Balb/c mice macrophage and human monocyte type (HTP−1 non-adherent) cells. Applied to magnesium substrates, polyterpenol encapsulating layer significantly slowed down in vitro biodegradation of the metal, thus increasing the viability and growth of HTP−1 cells. Recently, applied to varied nanostructured titanium surfaces, polyterpenol thin films successfully reduced attachment, growth, and viability of P. aeruginosa and S. aureus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The association between temperatures and risk of cardiovascular mortality has been recognized but the association drawn from previous meta-analysis was weak due to the lack of sufficient studies. This paper presented a review with updated reports in the literature about the risk of cardiovascular hospitalization in relation to different temperature exposures and examined the dose–response relationship of temperature-cardiovascular hospitalization by change in units of temperature, latitudes, and lag days. The pooled effect sizes were calculated for cold, heat, heatwave, and diurnal variation using random-effects meta-analysis, and the dose–response relationship of temperature-cardiovascular admission was modelled using random-effect meta-regression. The Cochrane Q-test and index of heterogeneity (I2) were used to evaluate heterogeneity, and Egger's test was used to evaluate publication bias. Sixty-four studies were included in meta-analysis. The pooled results suggest that for a change in temperature condition, the risk of cardiovascular hospitalization increased 2.8% (RR, 1.028; 95% CI, 1.021–1.035) for cold exposure, 2.2% (RR, 1.022; 95% CI, 1.006–1.039) for heatwave exposure, and 0.7% (RR, 1.007; 95% CI, 1.002–1.012) for an increase in diurnal temperature. However no association was observed for heat exposure. The significant dose–response relationship of temperature — cardiovascular admission was found with cold exposure and diurnal temperature. Increase in one-day lag caused a marginal reduction in risk of cardiovascular hospitalizations for cold exposure and diurnal variation, and increase in latitude was associated with a decrease in risk of cardiovascular hospitalizations for diurnal temperature only. There is a significant short-term effect of cold exposure, heatwave and diurnal variation on cardiovascular hospitalizations. Further research is needed to understand the temperature-cardiovascular relationship for different climate areas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Skin temperature assessment is a promising modality for early detection of diabetic foot problems, but its diagnostic value has not been studied. Our aims were to investigate the diagnostic value of different cutoff skin temperature values for detecting diabetes-related foot complications such as ulceration, infection, and Charcot foot and to determine urgency of treatment in case of diagnosed infection or a red-hot swollen foot. Materials and Methods The plantar foot surfaces of 54 patients with diabetes visiting the outpatient foot clinic were imaged with an infrared camera. Nine patients had complications requiring immediate treatment, 25 patients had complications requiring non-immediate treatment, and 20 patients had no complications requiring treatment. Average pixel temperature was calculated for six predefined spots and for the whole foot. We calculated the area under the receiver operating characteristic curve for different cutoff skin temperature values using clinical assessment as reference and defined the sensitivity and specificity for the most optimal cutoff temperature value. Mean temperature difference between feet was analyzed using the Kruskal–Wallis tests. Results The most optimal cutoff skin temperature value for detection of diabetes-related foot complications was a 2.2°C difference between contralateral spots (sensitivity, 76%; specificity, 40%). The most optimal cutoff skin temperature value for determining urgency of treatment was a 1.35°C difference between the mean temperature of the left and right foot (sensitivity, 89%; specificity, 78%). Conclusions Detection of diabetes-related foot complications based on local skin temperature assessment is hindered by low diagnostic values. Mean temperature difference between two feet may be an adequate marker for determining urgency of treatment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective Foodborne illnesses in Australia, including salmonellosis, are estimated to cost over $A1.25 billion annually. The weather has been identified as being influential on salmonellosis incidence, as cases increase during summer, however time series modelling of salmonellosis is challenging because outbreaks cause strong autocorrelation. This study assesses whether switching models is an improved method of estimating weather–salmonellosis associations. Design We analysed weather and salmonellosis in South-East Queensland between 2004 and 2013 using 2 common regression models and a switching model, each with 21-day lags for temperature and precipitation. Results The switching model best fit the data, as judged by its substantial improvement in deviance information criterion over the regression models, less autocorrelated residuals and control of seasonality. The switching model estimated a 5°C increase in mean temperature and 10 mm precipitation were associated with increases in salmonellosis cases of 45.4% (95% CrI 40.4%, 50.5%) and 24.1% (95% CrI 17.0%, 31.6%), respectively. Conclusions Switching models improve on traditional time series models in quantifying weather–salmonellosis associations. A better understanding of how temperature and precipitation influence salmonellosis may identify where interventions can be made to lower the health and economic costs of salmonellosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ambient temperature is one of the basic parameters characterising human comfort: are we too hot, too cold, or just right? The impact of temperature goes beyond comfort: inadequate temperature and temperature variations have consequences on human health, as the increasing numbers of studies have demonstrated. The topic is of particular significance at the times when climate change shifts the traditional – as we know them- temperature zones, and brings much wider temperature variations. For these reasons the impact of temperature on health has been one of the most popular topics among the articles submitted and published in Science of the Total Environment over the last few years. This Virtual Special Issue compiles 18 articles published in our journal on this topic since 2012. It is worth briefly summarizing the rich scientific insights brought by these articles, as well as broader considerations, particularly those extending to management, discussed by the authors of the articles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although BaZr 0.8Y 0.2O 3-δ(BZY) possesses large bulk proton conductivity and excellent chemical stability, its poor sinterability and grain boundaries block proton conduction. In this work, the effect of Ca as a co-dopant and as a sintering aid (as CaO), on the sinterability, proton conductivity, and fuel cell performance of BZY was investigated. The addition of 4 mol% CaO significantly improved the BZY sinterability: BZY pellets with densities of 92.7% and 97.5% with respect to the theoretical density were obtained after sintering at 1500°C and 1600°C, respectively. The improved BZY sinterability by CaO addition resulted also in a large proton conductivity; at 600°C, the total conductivity of BZY-CaO was 2.14 × 10 -3 S/cm, in wet Ar. Anode-supported fuel cells with 25 μm-thick BZY-CaO electrolyte membranes were fabricated by a dual-layer co-firing technique. The peak power density of the fuel cell with a BZY-Ni/BZY-4CaO/BZY-LSCF (La 0.6Sr 0.4Fe 0.8Co 0.2O 3-δ) configuration was 141 mW/cm 2 at 700°C, several times larger than the reported values of BZY electrolyte membrane fuel cells sintered with the addition of CuO or ZnO, demonstrating promising features for practical fuel cell applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article, a novel pressureless solid-liquid reaction method is presented for preparation of yttrium disilicate (γ-Y2Si2O7). Single-phase γ-Y2Si2O7 powder was synthesized by calcination of SiO2 and Y2O3 powders with the addition of LiYO2 at 1400 °C for 4 h. The addition of LiYO2 significantly decreased the synthesis temperature, shortened the calcination time, and enhanced the stability of γ-Y2Si2O7. The sintering of these powders in air and O2 was studied by means of thermal mechanical analyzer. It is shown that the γ-Y2Si2O7 sintered in oxygen had a faster densification rate and a higher density than that sintered in air. Furthermore, single-phase γ-Y2Si2O7 with a density of 4.0 g/cm3 (99% of the theoretical density) was obtained by pressureless sintering at 1400 °C for 2 h in oxygen. Microstructures of the sintered samples are studied by scanning electron microscope.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim and objectives To identify the prevalence that temperature reduced by more than 1°C from pre to post-procedure in a sample of non-anaesthetised patients undergoing procedures in a cardiac catheterisation laboratory. Background Advances in medical technology are minimising the invasiveness of diagnostic tests and treatments for disease, which is correspondingly increasing the number of medical procedures performed without sedation or anaesthesia. Procedural areas in which medical procedures are performed without anaesthesia are typically kept at a cool temperature for staff comfort. As such, there is a need to inform nursing practices in regard to the thermal management of non-anaesthetised patients undergoing procedures in surgical or procedural environments. Design Single-site observational study Methods Patients were included if they had undergone an elective procedure without sedation or anaesthesia in a cardiac catheterisation laboratory. Ambient room temperature was maintained between 18°C and 20°C. Passive warming with heated cotton blankets was applied. Nurses measured body temperature and thermal comfort before and after 342 procedures. Results Mean change in temperature was -0.08°C (Standard deviation 0.43). The reduction in temperature was more than 1°C after 11 procedures (3.2%). One patient whose temperature had reduced more than 1°C after their procedure reported thermal discomfort. A total of 12 patients were observed to be shivering post-procedure (3.6%). No demographic or clinical characteristics were associated with reduction in temperature of more than 1°C from pre to post-procedure. Conclusions Significant reduction in body temperature was rare in our sample of non-anaesthetised patients. Relevance to clinical practice Similar results would likely be found in other procedural contexts during procedures conducted in settings with comparable room temperatures where passive warming can also be applied with limited skin exposure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fe-doped tungsten oxide thin films with different concentrations (0 to 2.6 at%) were synthesized on glass and alumina substrates at room temperature using DC reactive sputtering and subsequently annealed at 300oC for 1 hour in air. The alumina substrate has pre-printed interdigitated Pt-electrodes for gas sensing measurements. The effects of Fe-doping on the film structure and morphology, electronic and optical properties for gas sensing were investigated. The grain size of the different films on the alumina and Pt regions of the substrate vary only slightly between 43-57 nm with median size of about 50 nm. Raman spectra showed that the integrated intensity of W=O to O–W–O bands increases with increasing Fe concentrations and this indicated an increase in the number of defects. From XPS the different concentrations of the Fe-doped films were 0.03 at%, 1.33 at% and 2.6 at%. All the films deposited on glass substrate have shown similar visible transmittance (about 70%) but the optical band gap of the pure film decreased form 3.30 eV to 3.15 eV after doping with 2.6 at% Fe. The Fe-doped WO3 film with the highest Fe concentration (2.6 at% Fe) has shown an enhanced gas sensing properties to NO2 at relatively lower operating temperature (150oC) and this can be attributed to the decrease in the optical band gap and an increase in the number of defects compared to the pure WO3 film.