438 resultados para ANCA associated vasculites


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The acyl composition of membrane phospholipids in kidney and brain of mammals of different body mass was examined. It was hypothesized that reduction in unsaturation index (number of double bonds per 100 acyl chains) of membrane phospholipids with increasing body mass in mammals would be made-up of similar changes in acyl composition across all phospholipid classes and that phospholipid class distribution would be regulated and similar in the same tissues of the different-sized mammals. The results of this study supported both hypotheses. Differences in membrane phospholipid acyl composition (i. e. decreased omega-3 fats, increased monounsaturated fats and decreased unsaturation index with increasing body size) were not restricted to any specific phospholipid molecule or to any specific phospholipid class but were observed in all phospholipid classes. With increase in body mass of mammals both monounsaturates and use of less unsaturated polyunsaturates increases at the expense of the long-chain highly unsaturated omega-3 and omega-6 polyunsaturates, producing decreases in membrane unsaturation. The distribution of membrane phospholipid classes was essentially the same in the different-sized mammals with phosphatidylcholine (PC) and phosphatidylethanolamine (PE) together constituting similar to 91% and similar to 88% of all phospholipids in kidney and brain, respectively. The lack of sphingomyelin in the mouse tissues and higher levels in larger mammals suggests an increased presence of membrane lipid rafts in larger mammals. The results of this study support the proposal that the physical properties of membranes are likely to be involved in changing metabolic rate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

While overall obesity rates are rising, a minority of individuals appear to resist overconsumption and remain lean in spite of an ‘obesogenic’ environment. Studying the factors hypothesised to underpin behaviours associated with resistance to overconsumption may inform weight management strategies in an adverse environment. Trait (BIS-11) and behavioural (response inhibition, GoStop) self control were assessed in the laboratory. Snack food consumption was measured covertly via a sham taste test. Lack of motor control was positively correlated (r = .32, p <. 05) and successful response inhibition was negatively correlated (r = −.35, p <. 05) with snack food intake. Low motor control was also associated with further food intake when satiated (r = .39, p < .01). These relationships were independent of self-reported palatability and perceived reward value of the food. Motor control may be an important factor implicated in ‘mindless’ eating in an environment abundant in palatable, energy-dense snack foods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Breast carcinoma is accompanied by changes in the acellular and cellular components of the microenvironment, the latter typified by a switch from fibroblasts to myofibroblasts. Methods: We utilised conditioned media cultures, Western blot analysis and immunocytochemistry to investigate the differential effects of normal mammary fibroblasts (NMFs) and mammary cancer-associated fibroblasts (CAFs) on the phenotype and behaviour of PMC42-LA breast cancer cells. NMFs were obtained from a mammary gland at reduction mammoplasty, and CAFs from a mammary carcinoma after resection. Results We found greater expression of myofibroblastic markers in CAFs than in NMFs. Medium from both CAFs and NMFs induced novel expression of α-smooth muscle actin and cytokeratin-14 in PMC42-LA organoids. However, although conditioned media from NMFs resulted in distribution of vimentin-positive cells to the periphery of PMC42-LA organoids, this was not seen with CAF-conditioned medium. Upregulation of vimentin was accompanied by a mis-localization of E-cadherin, suggesting a loss of adhesive function. This was confirmed by visualizing the change in active β-catenin, localized to the cell junctions in control cells/ cells in NMF-conditioned medium, to inactive β-catenin, localized to nuclei and cytoplasm in cells in CAF-conditioned medium. Conclusion We found no significant difference between the influences of NMFs and CAFs on PMC42-LA cell proliferation, viability, or apoptosis; significantly, we demonstrated a role for CAFs, but not for NMFs, in increasing the migratory ability of PMC42-LA cells. By concentrating NMF-conditioned media, we demonstrated the presence of factor(s) that induce epithelial-mesenchymal transition in NMF-conditioned media that are present at higher levels in CAF-conditioned media. Our in vitro results are consistent with observations in vivo showing that alterations in stroma influence the phenotype and behaviour of surrounding cells and provide evidence for a role for CAFs in stimulating cancer progression via an epithelial-mesenchymal transition. These findings have implications for our understanding of the roles of signalling between epithelial and stromal cells in the development and progression of mammary carcinoma.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have previously observed in vitro that some stromal proteinases (MMP- 2, MT1-MMP) were expressed or activated by invasive carcinoma cell lines exhibiting mesenchymal features, presumably acquired through an epithelial to mesenchymal transition (EMT). To examine the potential contribution of c- ets-1 to this phenotype, we have compared here the expression of c-ets-1 with invasiveness in vitro and expression of vimentin, E-cadherin, uPA, MMP-1 and MMP-3 in a panel of human breast cancer cell lines. Our results clearly demonstrate an association between c-ets-1 expression and the invasive, EMT- derived phenotype, which is typified by the expression of vimentin and the lack of E-cadherin. While absent from the two non-invasive, vimentin-negative cell lines, c-ets-1 was abundantly expressed in all the four vimentin- positive lines. However, we could not find a clear quantitative or qualitative relationship between the expression of c-ets-1 and the three proteinases known to he regulated by c-ets-1, except that when they were expressed, it was only in the invasive c-ets-1-positive lines. UPA mRNAs were found in three of the four vimentin-positive lines, MMP-1 in two of the four, and MMP-3 could not be detected in any of the cell lines. Intriguingly, MDA- MB-435 cells, which exhibit the highest metastatic potential of these cell lines in nude mice, expressed vimentin and c-ets-1, but lacked expression of these three proteinases, at least under the culture conditions employed. Taken together, our results show that c-ets-1 expression is associated with an invasive, EMT-derived phenotype in breast cancer cells, although it is apparently not sufficient to ensure the expression of uPA, MMP-1 or MMP-3, in the vimentin-positive cells. Such proteases regulation is undoubtedly qualified by the cellular context. This study therefore advances our understanding of the molecular regulation of invasiveness in EMT-associated carcinoma progression, and suggests that c-ets-1 may contribute to the invasive phenotype in carcinoma cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective To determine the relationship between family child care home (FCCH) practices and characteristics, and objectively measured physical activity (PA) among children attending FCCHs. Methods FCCH practices and characteristics were assessed in 45 FCCHs in Oregon (USA) in 2010-2011 using the Nutrition and Physical Activity Self-Assessment for Child Care Instrument. Within the 45 FCCHs, 136 children between ages 2 and 5. years wore an accelerometer during child care attendance over a one-week period. Time spent in light, moderate, and vigorous PA per hour was calculated using intensity-related cut-points (Pate et al., 2006). Results FCCH characteristics and practices associated with higher levels of PA (min/h; p < 0.05) included provision of sufficient outdoor active play [32.2 (1.0) vs. 28.6 (1.3)], active play using portable play equipment [31.7 (1.0) vs. 29.3 (1.4)], the presence of a variety of fixed play equipment [32.2 (1.0) vs. 28.9 (1.3)], and suitable indoor play space [32.2 (1.0) vs. 28.6 (1.3)], engaging in active play with children [32.1 (1.1) vs. 29.6 (1.2)], and receiving activity-related training [33.1 (1.2) vs. 30.3 (1.1)]. Conclusions This is the first study to identify practices and characteristics of FCCHs that influence children's PA. These data should be considered when developing programs and policies to promote PA in FCCHs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated the effects of the matrix metalloproteinase 13 (MMP13)-selective inhibitor, 5-(4-{4-[4-(4-fluorophenyl)-1,3-oxazol-2-yl]phenoxy}phenoxy)-5-(2-methoxyethyl) pyrimidine-2,4,6(1H,3H,5H)-trione (Cmpd-1), on the primary tumor growth and breast cancer-associated bone remodeling using xenograft and syngeneic mouse models. We used human breast cancer MDA-MB-231 cells inoculated into the mammary fat pad and left ventricle of BALB/c Nu/Nu mice, respectively, and spontaneously metastasizing 4T1.2-Luc mouse mammary cells inoculated into mammary fat pad of BALB/c mice. In a prevention setting, treatment with Cmpd-1 markedly delayed the growth of primary tumors in both models, and reduced the onset and severity of osteolytic lesions in the MDA-MB-231 intracardiac model. Intervention treatment with Cmpd-1 on established MDA-MB-231 primary tumors also significantly inhibited subsequent growth. In contrast, no effects of Cmpd-1 were observed on soft organ metastatic burden following intracardiac or mammary fat pad inoculations of MDA-MB-231 and 4T1.2-Luc cells respectively. MMP13 immunostaining of clinical primary breast tumors and experimental mice tumors revealed intra-tumoral and stromal expression in most tumors, and vasculature expression in all. MMP13 was also detected in osteoblasts in clinical samples of breast-to-bone metastases. The data suggest that MMP13-selective inhibitors, which lack musculoskeletal side effects, may have therapeutic potential both in primary breast cancer and cancer-induced bone osteolysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

MMP-2 (gelatinase A) has been associated with the invasive potential of many cancer cells both in vitro and in vivo. It is now becoming clear that the activation of this enzyme might be a key step in tumor invasion. This activation process has been shown to be a membrane-associated pathway inducible by various agents such as collagen type I, concanavalin A or TGF-β, but its physiological regulation is still largely unresolved. MT-MMP was recently discovered and described as a potential gelatinase-A activator. In the present study, we investigated the expression of MT-MMP (membrane-type metalloproteinase) in cervical cancer cells both in vitro and in vivo. Comparing several in vitro-transformed cervical cell lines, previously shown to display different invasive potentials, our results showed that the ability of cells to overexpress MT-MMP mRNA following ConA induction correlated with their ability to activate gelatinase A and with a highly invasive behavior. Moreover, using immunohistochemistry and in situ hybridization, we found a higher level of MT-MMP expression in invasive cervical carcinoma and lymphnode metastases compared to its expression in non-invasive CIN III lesions. Our in vivo observations also clearly demonstrated a cooperation between stromal and tumor cells for the production of MT-MMP. Taken together, our results clearly correlated high level MT-MMP expression with invasiveness, and thus suggested that MT-MMP might play a crucial role in cervical tumor invasion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The expression of neutrophil gelatinase-associated lipocalin (NGAL) has been shown to be upregulated in ovarian cancer cells. In this study, we report that the expression of immunoreactive NGAL (irNGAL) in ovarian tumors changes with disease grade and that this change is reflected in the concentration of NGAL in peripheral blood. A total of 59 ovarian tissues including normal, benign, borderline malignant and grades 1, 2 and 3 malignant were analyzed using immunohistochemistry. irNGAL was not present in normal ovaries and the NGAL expression was weak to moderate in benign tissues. Both borderline and grade 1 tumors displayed the highest amount of NGAL expression with moderate to strong staining, whereas in grade 2 and 3 tumors, the extent of staining was significantly less (p < 0.01) and staining intensity was weak to moderate. Staining in all cases was confined to the epithelium. NGAL expression was analyzed by ELISA in 62 serum specimens from normal and different grades of cancer patients. Compared to control samples, the NGAL concentration was 2 and 2.6-fold higher in the serum of patients with benign tumors and cancer patients with grade 1 tumors (p < 0.05) and that result was consistent with the expression of NGAL performed by Western blot. NGAL expression was evaluated by Western blot in an immortalized normal ovarian cell line (IOSE29) as well as ovarian cancer cell lines. Moderate to strong expression of NGAL was observed in epithelial ovarian cancer cell lines SKOV3 and OVCA433 while no expression of NGAL was evident in normal IOSE29 and mesenchyme-like OVHS1, PEO.36 and HEY cell lines. NGAL expression was downregulated in ovarian cancer cell lines undergoing epithelio-mesenchymal transition (EMT) induced by epidermal growth factor (EGF). Down-regulation of NGAL expression correlated with the upregulation of vimentin expression, enhanced cell dispersion and downregulation of E-cadherin expression, some of the hallmarks of EMT. EGF-induced EMT phenotypes were inhibited in the presence of AG1478, an inhibitor of EGF receptor tyrosine kinase activity. These data indicate that NGAL may be a good marker to monitor changes of benign to premalignant and malignant ovarian tumors and that the molecule may be involved in the progression of epithelial ovarian malignancies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fatty acid methyl ester (FAME) profiles, together with Biolog substrate utilization patterns, were used in conjunction with measurements of other soil chemical and microbiological properties to describe differences in soil microbial communities induced by increased salinity and alkalinity in grass/legume pastures at three sites in SE South Australia. Total ester-linked FAMEs (EL-FAMEs) and phospholipid-linked FAMEs (PL-FAMEs), were also compared for their ability to detect differences between the soil microbial communities. The level of salinity and alkalinity in affected areas of the pastures showed seasonal variation, being greater in summer than in winter. At the time of sampling for the chemical and microbiological measurements (winter) only the affected soil at site 1 was significantly saline. The affected soils at all three sites had lower organic C and total N concentrations than the corresponding non-affected soils. At site 1 microbial biomass, CO 2-C respiration and the rate of cellulose decomposition was also lower in the affected soil compared to the non-affected soil. Biomarker fatty acids present in both the EL- and PL-FAME profiles indicated a lower ratio of fungal to bacterial fatty acids in the saline affected soil at site 1. Analysis of Biolog substrate utilization patterns indicated that the bacterial community in the affected soil at site 1 utilized fewer carbon substrates and had lower functional diversity than the corresponding community in the non-affected soil. In contrast, increased alkalinity, of major importance at sites 2 and 3, had no effect on microbial biomass, the rate of cellulose decomposition or functional diversity but was associated with significant differences in the relative amounts of several fatty acids in the PL-FAME profiles indicative of a shift towards a bacterial dominated community. Despite differences in the number and relative amounts of fatty acids detected, principal component analysis of the EL- and PL-FAME profiles were equally capable of separating the affected and non-affected soils at all three sites. Redundancy analysis of the FAME data showed that organic C, microbial biomass, electrical conductivity and bicarbonate-extractable P were significantly correlated with variation in the EL-FAME profiles, whereas pH, electrical conductivity, NH 4-N, CO 2-C respiration and the microbial quotient were significantly correlated with variation in the PL-FAME profiles. Redundancy analysis of the Biolog data indicated that cation exchange capacity and bicarbonate-extractable K were significantly correlated with the variation in Biolog substrate utilization patterns.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Homologous recombination (HR) reactions mediated by the RAD51 recombinase are essential for DNA and replication fork repair, genome stability, and tumor suppression. RAD51-associated protein 1 (RAD51AP1) is an important HR factor that associates with and stimulates the recombinase activity of RAD51. We have recently shown that RAD51AP1 also partners with the meiotic recombinase DMC1, displaying isoform-specific interactions with DMC1. Here, we have characterized the DMC1 interaction site in RAD51AP1 by a series of truncations and point mutations to uncover a highly conserved WVPP motif critical for DMC1 interaction but dispensable for RAD51 association. This RAD51AP1 motif is reminiscent of the FVPP motif in the tumor suppressor protein BRCA2 that mediates DMC1 interaction. These results further implicate RAD51AP1 in meiotic HR via RAD51 and DMC1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Homologous recombination is needed for meiotic chromosome segregation, genome maintenance, and tumor suppression. RAD51AP1 (RAD51 associated protein 1) has been shown to interact with and enhance the recombinase activity of RAD51. Accordingly, genetic ablation of RAD51AP1 leads to enhanced sensitivity to and also chromosome aberrations upon DNA damage, demonstrating a role for RAD51AP1 in mitotic homologous recombination. Here we show physical association of RAD51AP1 with the meiosis-specific recombinase DMC1 and a stimulatory effect of RAD51AP1 on the DMC1-mediated D-loop reaction. Mechanistic studies have revealed that RAD51AP1 enhances the ability of the DMC1 presynaptic filament to capture the duplex-DNA partner and to assemble the synaptic complex, in which the recombining DNA strands are homologously aligned. We also provide evidence that functional cooperation is dependent on complex formation between DMC1 and RAD51AP1 and that distinct epitopes in RAD51AP1 mediate interactions with RAD51 and DMC1. Finally, we show that RAD51AP1 is expressed in mouse testes, and that RAD51AP1 foci colocalize with a subset of DMC1 foci in spermatocytes. These results suggest that RAD51AP1 also serves an important role in meiotic homologous recombination.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Homologous recombination catalyzed by the RAD51 recombinase is essential for maintaining genome integrity upon the induction of DNA double strand breaks and other DNA lesions. By enhancing the recombinase activity of RAD51, RAD51AP1 (RAD51-associated protein 1) serves a key role in homologous recombination-mediated chromosome damage repair. We show here that RAD51AP1 harbors two distinct DNA binding domains that are both needed for maximal protein activity under physiological conditions. We have finely mapped the two DNA binding domains in RAD51AP1 and generated mutant variants that are impaired in either or both of the DNA binding domains. Examination of these mutants reveals that both domains are indispensable for RAD51AP1 function in cells. These and other results illuminate the mechanistic basis of RAD51AP1 action in homologous DNA repair.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Protein arginine methyltransferases (PRMTs) methylate arginine residues on histones and target transcription factors that play critical roles in many cellular processes, including gene transcription, mRNA splicing, proliferation, and differentiation. Recent studies have linked PRMT-dependent epigenetic marks and modifications to carcinogenesis and metastasis in cancer. However, the role of PRMT2-dependent signaling in breast cancer remains obscure. We demonstrate PRMT2 mRNA expression was significantly decreased in breast cancer relative to normal breast. Gene expression profiling, Ingenuity and protein-protein interaction network analysis after PRMT2-short interfering RNA transfection into MCF-7 cells, revealed that PRMT2-dependent gene expression is involved in cell-cycle regulation and checkpoint control, chromosomal instability, DNA repair, and carcinogenesis. For example, PRMT2 depletion achieved the following: 1) increased p21 and decreased cyclinD1 expression in (several) breast cancer cell lines, 2) decreased cell migration, 3) induced an increase in nucleotide excision repair and homologous recombination DNA repair, and 4) increased the probability of distance metastasis free survival (DMFS). The expression of PRMT2 and retinoid-related orphan receptor-γ (RORγ) is inversely correlated in estrogen receptor-positive breast cancer and increased RORγ expression increases DMFS. Furthermore, we found decreased expression of the PRMT2-dependent signature is significantly associated with increased probability of DMFS. Finally, weighted gene coexpression network analysis demonstrated a significant correlation between PRMT2-dependent genes and cell-cycle checkpoint, kinetochore, and DNA repair circuits. Strikingly, these PRMT2-dependent circuits are correlated with pan-cancer metagene signatures associated with epithelial-mesenchymal transition and chromosomal instability. This study demonstrates the role and significant correlation between a histone methyltransferase (PRMT2)-dependent signature, RORγ, the cell-cycle regulation, DNA repair circuits, and breast cancer survival outcomes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mapping of protein signaling networks within tumors can identify new targets for therapy and provide a means to stratify patients for individualized therapy. Despite advances in combination chemotherapy, the overall survival for childhood rhabdomyosarcoma remains ∼60%. A critical goal is to identify functionally important protein signaling defects associated with treatment failure for the 40% nonresponder cohort. Here, we show, by phosphoproteomic network analysis of microdissected tumor cells, that interlinked components of the Akt/mammalian target of rapamycin (mTOR) pathway exhibited increased levels of phosphorylation for tumors of patients with short-term survival. Specimens (n = 59) were obtained from the Children's Oncology Group Intergroup Rhabdomyosarcoma Study (IRS) IV, D9502 and D9803, with 12-year follow-up. High phosphorylation levels were associated with poor overall and poor disease-free survival: Akt Ser473 (overall survival P < 0.001, recurrence-free survival P < 0.0009), 4EBP1 Thr37/46 (overall survival P < 0.0110, recurrence-free survival P < 0.0106), eIF4G Ser1108 (overall survival P < 0.0017, recurrence-free survival P < 0.0072), and p70S6 Thr389 (overall survival P < 0.0085, recurrence-free survival P < 0.0296). Moreover, the findings support an altered interrelationship between the insulin receptor substrate (IRS-1) and Akt/mTOR pathway proteins (P < 0.0027) for tumors from patients with poor survival. The functional significance of this pathway was tested using CCI-779 in a mouse xenograft model. CCI-779 suppressed phosphorylation of mTOR downstream proteins and greatly reduced the growth of two different rhabdomyosarcoma (RD embryonal P = 0.00008; Rh30 alveolar P = 0.0002) cell lines compared with controls. These results suggest that phosphoprotein mapping of the Akt/mTOR pathway should be studied further as a means to select patients to receive mTOR/IRS pathway inhibitors before administration of chemotherapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Albumin binds low–molecular-weight molecules, including proteins and peptides, which then acquire its longer half-life, thereby protecting the bound species from kidney clearance. We developed an experimental method to isolate albumin in its native state and to then identify [mass spectrometry (MS) sequencing] the corresponding bound low–molecular-weight molecules. We used this method to analyze pooled sera from a human disease study set (high-risk persons without cancer, n= 40; stage I ovarian cancer, n = 30; stage III ovarian cancer, n = 40) to demonstrate the feasibility of this approach as a discovery method. Methods Albumin was isolated by solid-phase affinity capture under native binding and washing conditions. Captured albumin-associated proteins and peptides were separated by gel electrophoresis and subjected to iterative MS sequencing by microcapillary reversed-phase tandem MS. Selected albumin-bound protein fragments were confirmed in human sera by Western blotting and immunocompetition. Results In total, 1208 individual protein sequences were predicted from all 3 pools. The predicted sequences were largely fragments derived from proteins with diverse biological functions. More than one third of these fragments were identified by multiple peptide sequences, and more than one half of the identified species were in vivo cleavage products of parent proteins. An estimated 700 serum peptides or proteins were predicted that had not been reported in previous serum databases. Several proteolytic fragments of larger molecules that may be cancer-related were confirmed immunologically in blood by Western blotting and peptide immunocompetition. BRCA2, a 390-kDa low-abundance nuclear protein linked to cancer susceptibility, was represented in sera as a series of specific fragments bound to albumin. Conclusion Carrier-protein harvesting provides a rich source of candidate peptides and proteins with potential diverse tissue and cellular origins that may reflect important disease-related information.