379 resultados para 3D point cloud
Resumo:
As microenvironmental factors such as three-dimensionality and cell–matrix interactions are increasingly being acknowledged by cancer biologists, more complex 3D in vitro models are being developed to study tumorigenesis and cancer progression. To better understand the pathophysiology of bone metastasis, we have established and validated a 3D indirect co-culture model to investigate the paracrine interactions between prostate cancer (PCa) cells and human osteoblasts. Co-culture of the human PCa, LNCaP cells embedded within polyethylene glycol hydrogels with human osteoblasts in the form of a tissue engineered bone construct (TEB), resulted in reduced proliferation of LNCaP cells. LNCaP cells in both monoculture and co-culture were responsive to the androgen analog, R1881, as indicated by an increase in the expression (mRNA and/or protein induction) of androgen-regulated genes including prostate specific antigen and fatty acid synthase. Microarray gene expression analysis further revealed an up-regulation of bone markers and other genes associated with skeletal and vasculature development and a significant activation of transforming growth factor β1 downstream genes in LNCaP cells after co-culture with TEB. LNCaP cells co-cultured with TEB also unexpectedly showed similar changes in classical androgen-responsive genes under androgen-deprived conditions not seen in LNCaP monocultures. The molecular changes of LNCaP cells after co-culturing with TEBs suggest that osteoblasts exert a paracrine effect that may promote osteomimicry and modulate the expression of androgen-responsive genes in LNCaP cells. Taken together, we have presented a novel 3D in vitro model that allows the study of cellular and molecular changes occurring in PCa cells and osteoblasts that are relevant to metastatic colonization of bone. This unique in vitro model could also facilitate cancer biologists to dissect specific biological hypotheses via extensive genomic or proteomic assessments to further our understanding of the PCa-bone crosstalk.
Resumo:
Despite the fact that customer retention is crucial for providers of cloud enterprise systems, only little attention has been directed towards investigating the antecedents of subscription renewal in an organizational context. This is even more surprising, as cloud services are usually offered as subscription-based pricing models with the (theoretical) possibility of immediate service cancellation, strongly opposing classical long-term IT-Outsourcing contracts or license-based payment plans of on premise enterprise systems. To close this research gap an empirical study was undertaken. Firstly, a conceptual model was drawn from theories of social psychology, organizational system continuance and IS success. The model was subsequently tested using survey responses of senior management within companies which adopted cloud enterprise systems. Gathered data was then analysed using PLS. The results indicate that subscription renewal intention is influenced by both – social-related and technology-specific factors – which are able to explain 50.4% of the variance in the dependent variable. Beneath the cloud enterprise systems specific contributions, the work advances knowledge in the area of organizational system continuance, as well as IS success.
Resumo:
The ability of cloud computing to provide almost unlimited storage, backup and recovery, and quick deployment contributes to its widespread attention and implementation. Cloud computing has also become an attractive choice for mobile users as well. Due to limited features of mobile devices such as power scarcity and inability to cater computationintensive tasks, selected computation needs to be outsourced to the resourceful cloud servers. However, there are many challenges which need to be addressed in computation offloading for mobile cloud computing such as communication cost, connectivity maintenance and incurred latency. This paper presents taxonomy of the computation offloading approaches which aim to address the challenges. The taxonomy provides guidelines to identify research scopes in computation offloading for mobile cloud computing. We also outline directions and anticipated trends for future research.
Resumo:
This paper evaluates the performances of prediction intervals generated from alternative time series models, in the context of tourism forecasting. The forecasting methods considered include the autoregressive (AR) model, the AR model using the bias-corrected bootstrap, seasonal ARIMA models, innovations state space models for exponential smoothing, and Harvey’s structural time series models. We use thirteen monthly time series for the number of tourist arrivals to Hong Kong and Australia. The mean coverage rates and widths of the alternative prediction intervals are evaluated in an empirical setting. It is found that all models produce satisfactory prediction intervals, except for the autoregressive model. In particular, those based on the biascorrected bootstrap perform best in general, providing tight intervals with accurate coverage rates, especially when the forecast horizon is long.
Resumo:
An atmospheric microplasma jet produces three-dimensional (3D) microfluidic channels on dense arrays of vertically aligned carbon nanotubes, which confines Au nanodot aqueous solution. The resulting hybrid 3D nanostructure is exploited as an effective microscopic area-selective sensing platform based on surface-enhanced Raman scattering.
Resumo:
This research suggests information technology (IT) governance structures to manage the cloud computing services. The interest in acquiring IT resources as a utility from the cloud computing environment is gaining momentum. The cloud computing services present organizations with opportunities to manage their IT expenditure on an ongoing basis, and access to modern IT resources to innovate and manage their continuity. However, the cloud computing services are no silver bullet. Organizations would need to have appropriate governance structures and policies in place to manage the cloud computing services. The subsequent decisions from these governance structures will ensure the effective management of the cloud computing services. This management will facilitate a better fit of the cloud computing services into organizations’ existing processes to achieve the business (process-level) and the financial (firm-level) objectives. Using a triangulation approach, we suggest four governance structures for managing the cloud computing services. These structures are a chief cloud officer, a cloud management committee, a cloud service facilitation centre, and a cloud relationship centre. We also propose that these governance structures would relate directly to organizations cloud computing services-related business objectives, and indirectly to cloud computing services-related financial objectives. Perceptive field survey data from actual and prospective cloud computing service adopters suggest that the suggested governance structures would contribute directly to cloud computing-related business objectives and indirectly to cloud computing-related financial objectives.
Resumo:
Optimisation of Organic Rankine Cycles (ORCs) for binary cycle applications could play a major role in determining the competitiveness of low to moderate renewable sources. An important aspect of the optimisation is to maximise the turbine output power for a given resource. This requires careful attention to the turbine design notably through numerical simulations. Challenges in the numerical modelling of radial-inflow turbines using high-density working fluids still need to be addressed in order to improve the turbine design and better optimise ORCs. This paper presents preliminary 3D numerical simulations of a radial-inflow turbine working with high-density fluids in realistic geothermal ORCs. Following extensive investigation of the operating conditions and thermodynamic cycle analysis, the refrigerant R143a is chosen as the high-density working fluid. The 1D design of the candidate radial-inflow turbine is presented in details. Furthermore, commercially-available software Ansys-CFX is used to perform the 3D CFD simulations for a number of operating conditions including off-design conditions. The real-gas properties are obtained using the Peng-Robinson equations of state. The preliminary design created using dedicated radial-inflow turbine software Concepts-Rital is discussed and the 3D CFD results are presented and compared against the meanline analysis.
Resumo:
This study reports on the utilisation of the Manchester Driver Behaviour Questionnaire (DBQ) to examine the self-reported driving behaviours of a large sample of Australian fleet drivers (N = 3414). Surveys were completed by employees before they commenced a one day safety workshop intervention. Factor analysis techniques identified a three factor solution similar to previous research, which was comprised of: (a) errors, (b) highway-code violations and (c) aggressive driving violations. Two items traditionally related with highway-code violations were found to be associated with aggressive driving behaviours among the current sample. Multivariate analyses revealed that exposure to the road, errors and self-reported offences predicted crashes at work in the last 12 months, while gender, highway violations and crashes predicted offences incurred while at work. Importantly, those who received more fines at work were at an increased risk of crashing the work vehicle. However, overall, the DBQ demonstrated limited efficacy at predicting these two outcomes. This paper outlines the major findings of the study in regards to identifying and predicting aberrant driving behaviours and also highlights implications regarding the future utilisation of the DBQ within fleet settings.
Resumo:
(Figure Presented) Unusual conductivity effects: Suitably functionalized dendrimers (see picture) are capable of forming truly covalent three-dimensional networks with remarkably high conductivity on electrochemical doping. Depending on the charging level of the electroactive components used as building blocks for the dendrimer core and the perimeter, two separated regimes of electrical conductivity can be observed.
Resumo:
Accurate process model elicitation continues to be a time consuming task, requiring skill on the part of the interviewer to extract explicit and tacit process information from the interviewee. Many errors occur in this elicitation stage that would be avoided by better activity recall, more consistent specification methods and greater engagement in the elicitation process by interviewees. Theories of situated cognition indicate that interactive 3D representations of real work environments engage and prime the cognitive state of the viewer. In this paper, our major contribution is to augment a previous process elicitation methodology with virtual world context metadata, drawn from a 3D simulation of the workplace. We present a conceptual and formal approach for representing this contextual metadata, integrated into a process similarity measure that provides hints for the business analyst to use in later modelling steps. Finally, we conclude with examples from two use cases to illustrate the potential abilities of this approach.
Resumo:
We investigate whether framing effects of voluntary contributions are significant in a provision point mechanism. Our results show that framing significantly affects individuals of the same type: cooperative individuals appear to be more cooperative in the public bads game than in the public goods game, whereas individualistic subjects appear to be less cooperative in the public bads game than in the public goods game. At the aggregate level of pooling all individuals, the data suggests that framing effects are negligible, which is in contrast with the established result.
Resumo:
This paper presents a formative measurement index to assess cloud enterprise systems success. The scale development procedure is based on Moore and Benbasat (1991), including newer scale development elements which focus on the creation and assessment of formative constructs. The data is analysed using SmartPLS with a sample of 103 IT decision makers. The results show that the perception of net benefits is shaped not only by enterprise-system-specific factors like productivity improvements and higher quality of business processes, but also by factors which are specifically attributed to cloud systems, such as higher strategic flexibility. Reliability, user requirements and customization contribute most to the overall perception of system quality. Information quality shows no cloud-specific facets and is robust in the context of cloud enterprise systems.
Resumo:
This thesis explored the different bone-forming potential of specific bone cells with differing embryological origin, on conventional culture platforms compared to 3D biocompatible scaffolds in vitro. Bone mesenchymal stem cells, mandibular osteoblasts and long bone osteoblasts from adult and juvenile sheep were compared in the study, as the embryological origin of the osteoblasts from the craniofacial and appendicular skeleton differs. The study demonstrated differing characteristics of the various cell types when cultured on the two different platforms compared and this may have an impact on future research into cell seeded tissue scaffolds to aid in vivo tissue regeneration.
Resumo:
Spatial data are now prevalent in a wide range of fields including environmental and health science. This has led to the development of a range of approaches for analysing patterns in these data. In this paper, we compare several Bayesian hierarchical models for analysing point-based data based on the discretization of the study region, resulting in grid-based spatial data. The approaches considered include two parametric models and a semiparametric model. We highlight the methodology and computation for each approach. Two simulation studies are undertaken to compare the performance of these models for various structures of simulated point-based data which resemble environmental data. A case study of a real dataset is also conducted to demonstrate a practical application of the modelling approaches. Goodness-of-fit statistics are computed to compare estimates of the intensity functions. The deviance information criterion is also considered as an alternative model evaluation criterion. The results suggest that the adaptive Gaussian Markov random field model performs well for highly sparse point-based data where there are large variations or clustering across the space; whereas the discretized log Gaussian Cox process produces good fit in dense and clustered point-based data. One should generally consider the nature and structure of the point-based data in order to choose the appropriate method in modelling a discretized spatial point-based data.
Resumo:
This paper is about localising across extreme lighting and weather conditions. We depart from the traditional point-feature-based approach as matching under dramatic appearance changes is a brittle and hard thing. Point feature detectors are fixed and rigid procedures which pass over an image examining small, low-level structure such as corners or blobs. They apply the same criteria applied all images of all places. This paper takes a contrary view and asks what is possible if instead we learn a bespoke detector for every place. Our localisation task then turns into curating a large bank of spatially indexed detectors and we show that this yields vastly superior performance in terms of robustness in exchange for a reduced but tolerable metric precision. We present an unsupervised system that produces broad-region detectors for distinctive visual elements, called scene signatures, which can be associated across almost all appearance changes. We show, using 21km of data collected over a period of 3 months, that our system is capable of producing metric localisation estimates from night-to-day or summer-to-winter conditions.