555 resultados para statistical distribution
Resumo:
Breast cancer is a leading contributor to the burden of disease in Australia. Fortunately, the recent introduction of diverse therapeutic strategies have improved the survival outcome for many women. Despite this, the clinical management of breast cancer remains problematic as not all approaches are sufficiently sophisticated to take into account the heterogeneity of this disease and are unable to predict disease progression, in particular, metastasis. As such, women with good prognostic outcomes are exposed to the side effects of therapies without added benefit. Furthermore, women with aggressive disease for whom these advanced treatments would deliver benefit cannot be distinguished and opportunities for more intensive or novel treatment are lost. This study is designed to identify novel factors associated with disease progression, and the potential to inform disease prognosis. Frequently overlooked, yet common mediators of disease are the interactions that take place between the insulin-like growth factor (IGF) system and the extracellular matrix (ECM). Our laboratory has previously demonstrated that multiprotein insulin-like growth factor-I (IGF-I): insulin-like growth factor binding protein (IGFBP): vitronectin (VN) complexes stimulate migration of breast cancer cells in vitro, via the cooperative involvement of the insulin-like growth factor type I receptor (IGF-IR) and VN-binding integrins. However, the effects of IGF and ECM protein interactions on the dissemination and progression of breast cancer in vivo are unknown. It was hypothesised that interactions between proteins required for IGF induced signalling events and those within the ECM contribute to breast cancer metastasis and are prognostic and predictive indicators of patient outcome. To address this hypothesis, semiquantitative immunohistochemistry (IHC) analyses were performed to compare the extracellular and subcellular distribution of IGF and ECM induced signalling proteins between matched normal, primary cancer, and metastatic cancer among archival formalin-fixed paraffin-embedded (FFPE) breast tissue samples collected from women attending the Princess Alexandra Hospital, Brisbane. Multivariate Cox proportional hazards (PH) regression survival models in conjunction with a modified „purposeful selection of covariates. method were applied to determine the prognostic potential of these proteins. This study provides the first in-depth, compartmentalised analysis of the distribution of IGF and ECM induced signalling proteins. As protein function and protein localisation are closely correlated, these findings provide novel insights into IGF signalling and ECM protein function during breast cancer development and progression. Distinct IGF signalling and ECM protein immunoreactivity was observed in the stroma and/or in subcellular locations in normal breast, primary cancer and metastatic cancer tissues. Analysis of the presence and location of stratifin (SFN) suggested a causal relationship in ECM remodelling events during breast cancer development and progression. The results of this study have also suggested that fibronectin (FN) and ¥â1 integrin are important for the formation of invadopodia and epithelial-to-mesenchymal transition (EMT) events. Our data also highlighted the importance of the temporal and spatial distribution of IGF induced signalling proteins in breast cancer metastasis; in particular, SFN, enhancer-of-split and hairy-related protein 2 (SHARP-2), total-akt/protein kinase B 1 (Total-AKT1), phosphorylated-akt/protein kinase B (P-AKT), extracellular signal-related kinase-1 and extracellular signal-related kinase-2 (ERK1/2) and phosphorylated-extracellular signal-related kinase-1 and extracellular signal-related kinase-2 (P-ERK1/2). Multivariate survival models were created from the immunohistochemical data. These models were found to fit well with these data with very high statistical confidence. Numerous prognostic confounding effects and effect modifications were identified among elements of the ECM and IGF signalling cascade and corroborate the survival models. This finding provides further evidence for the prognostic potential of IGF and ECM induced signalling proteins. In addition, the adjusted measures of associations obtained in this study have strengthened the validity and utility of the resulting models. The findings from this study provide insights into the biological interactions that occur during the development of breast tissue and contribute to disease progression. Importantly, these multivariate survival models could provide important prognostic and predictive indicators that assist the clinical management of breast disease, namely in the early identification of cancers with a propensity to metastasise, and/or recur following adjuvant therapy. The outcomes of this study further inform the development of new therapeutics to aid patient recovery. The findings from this study have widespread clinical application in the diagnosis of disease and prognosis of disease progression, and inform the most appropriate clinical management of individuals with breast cancer.
Resumo:
The inquiries to return predictability are traditionally limited to conditional mean, while literature on portfolio selection is replete with moment-based analysis with up to the fourth moment being considered. This paper develops a distribution-based framework for both return prediction and portfolio selection. More specifically, a time-varying return distribution is modeled through quantile regressions and copulas, using quantile regressions to extract information in marginal distributions and copulas to capture dependence structure. A preference function which captures higher moments is proposed for portfolio selection. An empirical application highlights the additional information provided by the distributional approach which cannot be captured by the traditional moment-based methods.
Expression and distribution of cell-surface proteoglycans in the normal Lewis rat molar periodontium
Resumo:
Cell-surface proteoglycans participate in several biological functions such as cell cell and cell-matrix interactions, cell adhesion, the binding to various growth factors as co-receptors and repair. To understand better the expression and distribution of cell-surface proteoglycans in the periodontal tissues, an immunohistochemical evaluation of the normal Lewis rat molar periodontium using panels of antibodies for syndecan-1, -2, -4, glypican and betaglycan was carried out. Our results demonstrated the expression and distribution of all proteoglycans in the suprabasal gingival epithelium, soft and hard connective tissues. Both cellular and matrix localization was evident within the various periodontal compartments. The presence of these cell-surface proteoglycans indicates the potential for roles in the process of tissue homeostasis, repair or regeneration in periodontium of which each function requires further study.
Resumo:
Cell-surface proteoglycans participate in several biological functions including interactions with adhesion molecules, growth factors and a variety of other effector molecules. Accordingly, these molecules play a central role in various aspects of cell–cell and cell–matrix interactions. To investigate the expression and distribution of the cell surface proteoglycans, syndecan-1 and -2, during periodontal wound healing, immunohistochemical analyses were carried out using monoclonal antibodies against syndecan-1, or -2 core proteins. Both syndecan-1 and -2 were expressed and distributed differentially at various stages of early inflammatory cell infiltration, granulation tissue formation, and tissue remodeling in periodontal wound healing. Expression of syndecan-1 was noted in inflammatory cells within and around the fibrin clots during the earliest stages of inflammatory cell infiltration. During granulation tissue formation it was noted in fibroblast-like cells and newly formed blood vessels. Syndecan-1 was not seen in newly formed bone or cementum matrix at any of the time periods studied. Syndecan-1 expression was generally less during the late stages of wound healing but was markedly expressed in cells that were close to the repairing junctional epithelium. In contrast, syndecan-2 expression and distribution was not evident at the early stages of inflammatory cell infiltration. During the formation of granulation tissue and subsequent tissue remodeling, syndecan-2 was expressed extracellularly in the newly formed fibrils which were oriented toward the root surface. Syndecan-2 was found to be significantly expressed on cells that were close to the root surface and within the matrix of repaired cementum covering root dentin as well as at the alveolar bone edge. These findings indicate that syndecan-1 and -2 may have distinctive functions during wound healing of the periodontium. The appearance of syndecan-1 may involve both cell–cell and cell–matrix interactions, while syndecan-2 showed a predilection to associate with cell–matrix interactions during hard tissue formation.
Resumo:
Cognitive radio is an emerging technology proposing the concept of dynamic spec- trum access as a solution to the looming problem of spectrum scarcity caused by the growth in wireless communication systems. Under the proposed concept, non- licensed, secondary users (SU) can access spectrum owned by licensed, primary users (PU) so long as interference to PU are kept minimal. Spectrum sensing is a crucial task in cognitive radio whereby the SU senses the spectrum to detect the presence or absence of any PU signal. Conventional spectrum sensing assumes the PU signal as ‘stationary’ and remains in the same activity state during the sensing cycle, while an emerging trend models PU as ‘non-stationary’ and undergoes state changes. Existing studies have focused on non-stationary PU during the transmission period, however very little research considered the impact on spectrum sensing when the PU is non-stationary during the sensing period. The concept of PU duty cycle is developed as a tool to analyse the performance of spectrum sensing detectors when detecting non-stationary PU signals. New detectors are also proposed to optimise detection with respect to duty cycle ex- hibited by the PU. This research consists of two major investigations. The first stage investigates the impact of duty cycle on the performance of existing detec- tors and the extent of the problem in existing studies. The second stage develops new detection models and frameworks to ensure the integrity of spectrum sensing when detecting non-stationary PU signals. The first investigation demonstrates that conventional signal model formulated for stationary PU does not accurately reflect the behaviour of a non-stationary PU. Therefore the performance calculated and assumed to be achievable by the conventional detector does not reflect actual performance achieved. Through analysing the statistical properties of duty cycle, performance degradation is proved to be a problem that cannot be easily neglected in existing sensing studies when PU is modelled as non-stationary. The second investigation presents detectors that are aware of the duty cycle ex- hibited by a non-stationary PU. A two stage detection model is proposed to improve the detection performance and robustness to changes in duty cycle. This detector is most suitable for applications that require long sensing periods. A second detector, the duty cycle based energy detector is formulated by integrat- ing the distribution of duty cycle into the test statistic of the energy detector and suitable for short sensing periods. The decision threshold is optimised with respect to the traffic model of the PU, hence the proposed detector can calculate average detection performance that reflect realistic results. A detection framework for the application of spectrum sensing optimisation is proposed to provide clear guidance on the constraints on sensing and detection model. Following this framework will ensure the signal model accurately reflects practical behaviour while the detection model implemented is also suitable for the desired detection assumption. Based on this framework, a spectrum sensing optimisation algorithm is further developed to maximise the sensing efficiency for non-stationary PU. New optimisation constraints are derived to account for any PU state changes within the sensing cycle while implementing the proposed duty cycle based detector.
Resumo:
Background: Falciparum malaria is the most deadly among the four main types of human malaria. Although great success has been achieved since the launch of the National Malaria Control Programme in 1955, malaria remains a serious public health problem in China. This paper aimed to analyse the geographic distribution, demographic patterns and time trends of falciparum malaria in China. Methods: The annual numbers of falciparum malaria cases during 1992–2003 and the individual case reports of each clinical falciparum malaria during 2004–2005 were extracted from communicable disease information systems in China Center for Diseases Control and Prevention. The annual number of cases and the annual incidence were mapped by matching them to corresponding province- and county-level administrative units in a geographic information system. The distribution of falciparum malaria by age, gender and origin of infection was analysed. Time-series analysis was conducted to investigate the relationship between the falciparum malaria in the endemic provinces and the imported falciparum malaria in non-endemic provinces. Results: Falciparum malaria was endemic in two provinces of China during 2004–05. Imported malaria was reported in 26 non-endemic provinces. Annual incidence of falciparum malaria was mapped at county level in the two endemic provinces of China: Yunnan and Hainan. The sex ratio (male vs. female) for the number of cases in Yunnan was 1.6 in the children of 0–15 years and it reached 5.7 in the adults over 15 years of age. The number of malaria cases in Yunnan was positively correlated with the imported malaria of concurrent months in the non-endemic provinces. Conclusion: The endemic area of falciparum malaria in China has remained restricted to two provinces, Yunnan and Hainan. Stable transmission occurs in the bordering region of Yunnan and the hilly-forested south of Hainan. The age and gender distribution in the endemic area is characterized by the predominance of adult men cases. Imported falciparum malaria in the non-endemic area of China, affected mainly by the malaria transmission in Yunnan, has increased both spatially and temporally. Specific intervention measures targeted at the mobile population groups are warranted.
Resumo:
Maize streak virus (MSV) contributes significantly to the problem of extremely low African maize yields. Whilst a diverse range of MSV and MSV-like viruses are endemic in sub-Saharan Africa and neighbouring islands, only a single group of maize-adapted variants - MSV subtypes A1 -A6 - causes severe enough disease in maize to influence yields substantially. In order to assist in designing effective strategies to control MSV in maize, a large survey covering 155 locations was conducted to assess the diversity, distribution and genetic characteristics of the Ugandan MSV-A population. PCR-restriction fragment-length polymorphism analyses of 391 virus isolates identified 49 genetic variants. Sixty-two full-genome sequences were determined, 52 of which were detectably recombinant. All but two recombinants contained predominantly MSV-A1-like sequences. Of the ten distinct recombination events observed, seven involved inter-MSV-A subtype recombination and three involved intra-MSV-A1 recombination. One of the intra-MSV-A1 recombinants, designated MSV-A1 UgIII, accounted for >60% of all MSV infections sampled throughout Uganda. Although recombination may be an important factor in the emergence of novel geminivirus variants, it is demonstrated that its characteristics in MSV are quite different from those observed in related African cassava-infecting geminivirus species. © 2007 SGM.
Resumo:
Psittacine beak and feather disease (PBFD) has a broad host range and is widespread in wild and captive psittacine populations in Asia, Africa, the Americas, Europe and Australasia. Beak and feather disease circovirus (BFDV) is the causative agent. BFDV has an ~2 kb single stranded circular DNA genome encoding just two proteins (Rep and CP). In this study we provide support for demarcation of BFDV strains by phylogenetic analysis of 65 complete genomes from databases and 22 new BFDV sequences isolated from infected psittacines in South Africa. We propose 94% genome-wide sequence identity as a strain demarcation threshold, with isolates sharing > 94% identity belonging to the same strain, and strain subtypes sharing> 98% identity. Currently, BFDV diversity falls within 14 strains, with five highly divergent isolates from budgerigars probably representing a new species of circovirus with three strains (budgerigar circovirus; BCV-A, -B and -C). The geographical distribution of BFDV and BCV strains is strongly linked to the international trade in exotic birds; strains with more than one host are generally located in the same geographical area. Lastly, we examined BFDV and BCV sequences for evidence of recombination, and determined that recombination had occurred in most BFDV and BCV strains. We established that there were two globally significant recombination hotspots in the viral genome: the first is along the entire intergenic region and the second is in the C-terminal portion of the CP ORF. The implications of our results for the taxonomy and classification of circoviruses are discussed. © 2011 SGM.
Resumo:
Barmah Forest virus (BFV) disease is one of the most widespread mosquito-borne diseases in Australia. The number of outbreaks and the incidence rate of BFV in Australia have attracted growing concerns about the spatio-temporal complexity and underlying risk factors of BFV disease. A large number of notifications has been recorded continuously in Queensland since 1992. Yet, little is known about the spatial and temporal characteristics of the disease. I aim to use notification data to better understand the effects of climatic, demographic, socio-economic and ecological risk factors on the spatial epidemiology of BFV disease transmission, develop predictive risk models and forecast future disease risks under climate change scenarios. Computerised data files of daily notifications of BFV disease and climatic variables in Queensland during 1992-2008 were obtained from Queensland Health and Australian Bureau of Meteorology, respectively. Projections on climate data for years 2025, 2050 and 2100 were obtained from Council of Scientific Industrial Research Organisation. Data on socio-economic, demographic and ecological factors were also obtained from relevant government departments as follows: 1) socio-economic and demographic data from Australian Bureau of Statistics; 2) wetlands data from Department of Environment and Resource Management and 3) tidal readings from Queensland Department of Transport and Main roads. Disease notifications were geocoded and spatial and temporal patterns of disease were investigated using geostatistics. Visualisation of BFV disease incidence rates through mapping reveals the presence of substantial spatio-temporal variation at statistical local areas (SLA) over time. Results reveal high incidence rates of BFV disease along coastal areas compared to the whole area of Queensland. A Mantel-Haenszel Chi-square analysis for trend reveals a statistically significant relationship between BFV disease incidence rates and age groups (ƒÓ2 = 7587, p<0.01). Semi-variogram analysis and smoothed maps created from interpolation techniques indicate that the pattern of spatial autocorrelation was not homogeneous across the state. A cluster analysis was used to detect the hot spots/clusters of BFV disease at a SLA level. Most likely spatial and space-time clusters are detected at the same locations across coastal Queensland (p<0.05). The study demonstrates heterogeneity of disease risk at a SLA level and reveals the spatial and temporal clustering of BFV disease in Queensland. Discriminant analysis was employed to establish a link between wetland classes, climate zones and BFV disease. This is because the importance of wetlands in the transmission of BFV disease remains unclear. The multivariable discriminant modelling analyses demonstrate that wetland types of saline 1, riverine and saline tidal influence were the most significant risk factors for BFV disease in all climate and buffer zones, while lacustrine, palustrine, estuarine and saline 2 and saline 3 wetlands were less important. The model accuracies were 76%, 98% and 100% for BFV risk in subtropical, tropical and temperate climate zones, respectively. This study demonstrates that BFV disease risk varied with wetland class and climate zone. The study suggests that wetlands may act as potential breeding habitats for BFV vectors. Multivariable spatial regression models were applied to assess the impact of spatial climatic, socio-economic and tidal factors on the BFV disease in Queensland. Spatial regression models were developed to account for spatial effects. Spatial regression models generated superior estimates over a traditional regression model. In the spatial regression models, BFV disease incidence shows an inverse relationship with minimum temperature, low tide and distance to coast, and positive relationship with rainfall in coastal areas whereas in whole Queensland the disease shows an inverse relationship with minimum temperature and high tide and positive relationship with rainfall. This study determines the most significant spatial risk factors for BFV disease across Queensland. Empirical models were developed to forecast the future risk of BFV disease outbreaks in coastal Queensland using existing climatic, socio-economic and tidal conditions under climate change scenarios. Logistic regression models were developed using BFV disease outbreak data for the existing period (2000-2008). The most parsimonious model had high sensitivity, specificity and accuracy and this model was used to estimate and forecast BFV disease outbreaks for years 2025, 2050 and 2100 under climate change scenarios for Australia. Important contributions arising from this research are that: (i) it is innovative to identify high-risk coastal areas by creating buffers based on grid-centroid and the use of fine-grained spatial units, i.e., mesh blocks; (ii) a spatial regression method was used to account for spatial dependence and heterogeneity of data in the study area; (iii) it determined a range of potential spatial risk factors for BFV disease; and (iv) it predicted the future risk of BFV disease outbreaks under climate change scenarios in Queensland, Australia. In conclusion, the thesis demonstrates that the distribution of BFV disease exhibits a distinct spatial and temporal variation. Such variation is influenced by a range of spatial risk factors including climatic, demographic, socio-economic, ecological and tidal variables. The thesis demonstrates that spatial regression method can be applied to better understand the transmission dynamics of BFV disease and its risk factors. The research findings show that disease notification data can be integrated with multi-factorial risk factor data to develop build-up models and forecast future potential disease risks under climate change scenarios. This thesis may have implications in BFV disease control and prevention programs in Queensland.
Resumo:
The gross overrepresentation of Indigenous peoples in prison populations suggests that sentencing may be a discriminatory process. Using findings from recent (1991–2011) multivariate statistical sentencing analyses from the United States, Canada, and Australia, we review the 3 key hypotheses advanced as plausible explanations for baseline sentencing discrepancies between Indigenous and non-Indigenous adult criminal defendants: (a) differential involvement, (b) negative discrimination, and (c) positive discrimination. Overall, the prior research shows strong support for the differential involvement thesis and some support for the discrimination theses (positive and negative). We argue that where discrimination is found, it may be explained by the lack of a more complete set of control variables in researchers’ multivariate models and/or differing political and social contexts.
Resumo:
With the progressive exhaustion of fossil energy and the enhanced awareness of environmental protection, more attention is being paid to electric vehicles (EVs). Inappropriate siting and sizing of EV charging stations could have negative effects on the development of EVs, the layout of the city traffic network, and the convenience of EVs' drivers, and lead to an increase in network losses and a degradation in voltage profiles at some nodes. Given this background, the optimal sites of EV charging stations are first identified by a two-step screening method with environmental factors and service radius of EV charging stations considered. Then, a mathematical model for the optimal sizing of EV charging stations is developed with the minimization of total cost associated with EV charging stations to be planned as the objective function and solved by a modified primal-dual interior point algorithm (MPDIPA). Finally, simulation results of the IEEE 123-node test feeder have demonstrated that the developed model and method cannot only attain the reasonable planning scheme of EV charging stations, but also reduce the network loss and improve the voltage profile.
Resumo:
Molecular dynamics simulations were carried out on single chain models of linear low-density polyethylene in vacuum to study the effects of branch length, branch content, and branch distribution on the polymer’s crystalline structure at 300 K. The trans/gauche (t/g) ratios of the backbones of the modeled molecules were calculated and utilized to characterize their degree of crystallinity. The results show that the t/g ratio decreases with increasing branch content regardless of branch length and branch distribution, indicating that branch content is the key molecular parameter that controls the degree of crystallinity. Although t/g ratios of the models with the same branch content vary, they are of secondary importance. However, our data suggests that branch distribution (regular or random) has a significant effect on the degree of crystallinity for models containing 10 hexyl branches/1,000 backbone carbons. The fractions of branches that resided in the equilibrium crystalline structures of the models were also calculated. On average, 9.8% and 2.5% of the branches were found in the crystallites of the molecules with ethyl and hexyl branches while C13 NMR experiments showed that the respective probabilities of branch inclusion for ethyl and hexyl branches are 10% and 6% [Hosoda et al., Polymer 1990, 31, 1999–2005]. However, the degree of branch inclusion seems to be insensitive to the branch content and branch distribution.
Resumo:
The average structure (CI) of a volcanic plagioclase megacryst with composition Ano, from the Hogarth Ranges, Australia, has been determined using three-dimensional, singlecrystal neutron and X-ray diffraction data. Least squaresr efinements, incorporating anisotropic thermal motion of all atoms and an extinction correction, resulted in weighted R factors (based on intensities) of 0.076 and 0.056, respectively, for the neutron and X-ray data. Very weak e reflections could be detected in long-exposure X-ray and electron diffraction photographs of this crystal, but the refined average structure is believed to be unaffected by the presence of such a weak superstructure. The ratio of the scattering power of Na to that of Ca is different for X ray and neutron radiation, and this radiation-dependence of scattering power has been used to determine the distribution of Na and Ca over a split-atom M site (two sites designated M' and M") in this Ano, plagioclase. Relative peak-height ratios M'/M", revealed in difference Fourier sections calculated from neutron and X-ray data, formed the basis for the cation-distribution analysis. As neutron and X-ray data sets were directly compared in this analysis, it was important that systematic bias between refined neutron and X-ray positional parameters could be demonstrated to be absent. In summary, with an M-site model constrained only by the electron-microprobedetermined bulk composition of the crystal, the following values were obtained for the M-site occupanciesN: ar, : 0.29(7),N ar. : 0.23(7),C ar, : 0.15(4),a nd Car" : 0.33(4). These results indicate that restrictive assumptions about M sites, on which previous plagioclase refinements have been based, are not applicable to this Ano, and possibly not to the entire compositional range. T-site ordering determined by (T-O) bond-length variation-t,o : 0.51(l), trm = t2o = t2m = 0.32(l)-is weak, as might be expectedf rom the volcanic origin of this megacryst.