273 resultados para spin-coating film
Resumo:
Distribution Revolution is a collection of interviews with leading film and TV professionals concerning the many ways that digital delivery systems are transforming the entertainment business. These interviews provide lively insider accounts from studio executives, distribution professionals, and creative talent of the tumultuous transformation of film and TV in the digital era. The first section features interviews with top executives at major Hollywood studios, providing a window into the big-picture concerns of media conglomerates with respect to changing business models, revenue streams, and audience behaviors. The second focuses on innovative enterprises that are providing path-breaking models for new modes of content creation, curation, and distribution—creatively meshing the strategies and practices of Hollywood and Silicon Valley. And the final section offers insights from creative talent whose professional practices, compensation, and everyday working conditions have been transformed over the past ten years. Taken together, these interviews demonstrate that virtually every aspect of the film and television businesses is being affected by the digital distribution revolution, a revolution that has likely just begun. Interviewees include: • Gary Newman, Chairman, 20th Century Fox Television • Kelly Summers, Former Vice President, Global Business Development and New Media Strategy, Walt Disney Studios • Thomas Gewecke, Chief Digital Officer and Executive Vice President, Strategy and Business Development, Warner Bros. Entertainment • Ted Sarandos, Chief Content Officer, Netflix • Felicia D. Henderson, Writer-Producer, Soul Food, Gossip Girl • Dick Wolf, Executive Producer and Creator, Law & Order
Resumo:
I approached the editorial prompt as an opportunity to work through some of the concerns driving my current research on creative labor in emergent or ‘peripheral’ media hubs, centers of production activity outside established media capitals that are nevertheless increasingly integrated into a global production apparatus. It builds from my research on the role that film, television and digital media production have played in the economic and cultural strategies of Glasgow, Scotland, and extends the focus on media work to other locations, including Prague and Budapest. I am particularly drawn to the spatial dynamics at play in these locations and how local producers, writers, directors and crew negotiate a sense of place and creative identity against the flows and counter-flows of capital and culture. This means not only asking questions about the growing ensemble of people, places, firms and policies that make international productions possible, but also studying the more quotidian relationships between media workers and the locations (both near and far) where they now find work. I do not see these tasks as unrelated. On the one hand, such queries underscore how international production depends on a growing constellation of interchangeable parts and is facilitated by various actors whose agendas may or may not converge. On the other hand, these questions also betray an even more complicated dynamic, a process that is shifting the spatial orientation of both location and labor around uneven and contested scales. As local industries reimagine themselves as global players, media practitioners are caught up in a new geography of creative labor: not only are personnel finding it increasingly necessary to hop from place to place to follow the work, but also place itself is changing, as locations morph into nebulous amalgamations of tax rebates, subsidized facilities, production services and (when it still matters) natural beauty.
Resumo:
Optical transmittance and conductivity for thin metallic films, such as Au, are two inversely related and extremely important parameters for its application in organic photovoltaics as the front electrode. We report our findings on how these parameters have been optimized to attain maximum possible efficiencies by fabricating organic solar cells with thin Au film anodes of differing optical transmittances and consequently due to scaling at the nanolevel, varying electrical conductivities. There was an extraordinary improvement in the overall solar cell efficiency (to the order of 49%) when the Au thin film transmittance was increased from 38% to 54%. Surface morphologies of these thin films also have an effect on the critical parameters including, Voc, Jsc and FF.
Resumo:
Indium Tin Oxide (ITO) is the most commonly used anode as a transparent electrode and more recently as an anode for organic photovoltaics (OPVs). However, there are significant drawbacks in using ITO which include high material costs, mechanical instability including brittleness and poor electrical properties which limit its use in low-cost flexible devices. We present initial results of poly(3-hexylthiophene): phenyl-C61-butyric acid methyl ester OPVs showing that an efficiency of 1.9% (short-circuit current 7.01 mA/cm2, open-circuit voltage 0.55 V, fill factor 0.49) can be attained using an ultra thin film of gold coated glass as the device anode. The initial I-V characteristics demonstrate that using high work function metals when the thin film is kept ultra thin can be used as a replacement to ITO due to their greater stability and better morphological control.
Resumo:
The interaction at the interface between a metal electrode and photoactive polymer is crucial for overall performance and stability of organic photovoltaics (OPVs). In this article, we report a comparative study of the stability of thin film Ag and indium tin oxide (ITO) as electrodes when used in conjunction with an interfacial PEDOT:PSS layer for P3HT:PCBM blend OPV devices. XPS measurements were taken for Ag and ITO/PEDOT:PSS layered samples with different exposure times to ambient conditions (∼25 °C, ∼50% relative humidity) to investigate the migration of Ag and In into the PEDOT:PSS layer. The change in efficiency of OPVs with a longer exposure time and degree of migration is explained by the analysis of XPS results. We propose the mechanism behind the interactions occurring at the interfaces. The efficiency of the ITO electrode OPVs continuously decreased to below 10% of the initial efficiency. However, the Ag devices displayed a slower degradation and maintained 50% of the initial efficiency for the same period of time.
Resumo:
In this study, effects of concentrations of Cu(II), Zn(II) and Sn(II) ions in the electrolytic bath solution on the properties of electrochemically deposited CuZnSn (CZT) films were investigated. Study of the composition of a CZT film has shown that the metallic content (relative atomic ratio) in the film increased linearly with increase in the metal ion concentration. It is the first time that the relationship of the compositions of the alloy phases in the co-electrodeposited CZT film with the concentration of metal ions has been revealed. The results have confirmed that the formation and content of Cu6Sn5 and Cu5Zn8 alloy phases in the film were directly controlled by the concentration of Cu(II). SEM measurements have shown that Sn(II) has significant impact on film morphology, which became more porous as a result of the larger nucleation size of tin. The changes in the surface properties of the films was also confirmed by chronoamperometry characteristic (i–t) deposition curves. By optimization of metal ion concentrations in the electrolyte solution, a copper-poor and zinc-rich kesterite Cu2ZnSnS4 (CZTS) film was synthesized by the sulfurization of the deposited CZT film. The solar cell with the CZTS film showed an energy conversion efficiency of 2.15% under the illumination intensity of 100 mW cm 2.
Resumo:
This article looks at the various experiences of the film-makers involved in Shine in relation to copyright policy and litigation. Part 1 considers the involvement of Jan Sardi in the campaign to get screenwriters included in the moral rights regime in the film industry. Part 2 recounts the efforts of Scott Hicks to push for directors to acquire royalties under the retransmission scheme in the Copyright Amendment (Digital Agenda) Act 2000 (Cth). Part 3 discusses the contractual dispute between independent producer Jane Scott and the distributor over the gross receipts to the film Shine. Part 4 explores the disputes over the use of Sergei Rachmaninov's music in the film Shine.
Resumo:
Graphitic like layered materials exhibit intriguing electronic structures and thus the search for new types of two-dimensional (2D) monolayer materials is of great interest for developing novel nano-devices. By using density functional theory (DFT) method, here we for the first time investigate the structure, stability, electronic and optical properties of monolayer lead iodide (PbI2). The stability of PbI2 monolayer is first confirmed by phonon dispersion calculation. Compared to the calculation using generalized gradient approximation, screened hybrid functional and spin–orbit coupling effects can not only predicts an accurate bandgap (2.63 eV), but also the correct position of valence and conduction band edges. The biaxial strain can tune its bandgap size in a wide range from 1 eV to 3 eV, which can be understood by the strain induced uniformly change of electric field between Pb and I atomic layer. The calculated imaginary part of the dielectric function of 2D graphene/PbI2 van der Waals type hetero-structure shows significant red shift of absorption edge compared to that of a pure monolayer PbI2. Our findings highlight a new interesting 2D material with potential applications in nanoelectronics and optoelectronics.
Resumo:
To date, a number of two-dimensional (2D) topological insulators (TIs) have been realized in Group 14 elemental honeycomb lattices, but all are inversionsymmetric. Here, based on first-principles calculations, we predict a new family of 2D inversion-asymmetric TIs with sizeable bulk gaps from 105 meV to 284 meV, in X2–GeSn (X = H, F, Cl, Br, I) monolayers, making them in principle suitable for room-temperature applications. The nontrivial topological characteristics of inverted band orders are identified in pristine X2–GeSn with X = (F, Cl, Br, I), whereas H2–GeSn undergoes a nontrivial band inversion at 8% lattice expansion. Topologically protected edge states are identified in X2–GeSn with X = (F, Cl, Br, I), as well as in strained H2–GeSn. More importantly, the edges of these systems, which exhibit single-Dirac-cone characteristics located exactly in the middle of their bulk band gaps, are ideal for dissipationless transport. Thus, Group 14 elemental honeycomb lattices provide a fascinating playground for the manipulation of quantum states.
Resumo:
Three fullerene isoindoline nitroxides N-methyl-3,4-fulleropyrrolidine-2-spiro-5′- (1′,1′,3′,3′-tetramethylisoindolin-2′-yloxyl), (C60-(TMIO)m, and C70-(TMIO)n) were synthesized by the covalent bonding of 5-formyl-1,1,3,3-tetramethyl isoindolin-2-yloxyl to the fullerenes C60 and C70. Significantly, the X-ray photoelectron spectra indicated the characteristic N 1s signals of NO. at 402 eV. The atomic force microscope morphologies showed that the average particle sizes of C60-(TMIO)m and C70-(TMIO)n were 38 and 15 nm. The electrochemical experiments indicated that fullerene bound isoindoline nitroxides retained similar electrochemical properties and redox reaction mechanisms as the parent nitroxides. The electron paramagnetic resonance spectra of the fullerene isoindoline nitroxides all exhibited the hyperfine splittings and characteristic spectra of tetramethyl isoindoline nitroxides, with typical nitroxide g-values and nitrogen isotropic hyperfine coupling constants. Therefore, these fullerene isoindoline nitroxides may be considered as potential candidates for novel biological spin probes using electron paramagnetic resonance spectroscopy.
Resumo:
We report the synthesis of a new class of molecules which are hybrids of long-lived tetramethylisoindolinoxyl (TMIO) radicals and the pyrido[1,2-a]benzimidazole (PyrImid) scaffold. These compounds represent a new lead for noncovalently binding nucleic acid probes, as they interact with nucleic acids with previously unreported C (DNA) and C/U (RNA) complementarity, which can be detected by electron paramagnetic resonance (EPR) techniques. They also have promising properties for fluorimetric analysis, as their fluorescent spin-quenched derivatives exhibit a significant Stokes shift
Resumo:
Novel, highly chlorinated surface coatings were produced via a one-step plasma polymerization (pp) of 1,1,1-trichloroethane (TCE), exhibiting excellent antimicrobial properties against the vigorously biofilm-forming bacterium Staphylococcus epidermidis.
Resumo:
The creative industries are particularly fecund empirical fields for investigating the processes of business innovation and disruption. The creative industries are some of the fastest growing sectors in many economies (European Commission, 2001; OECD, 2006; United States Census Bureau, 2010) and thus are worthy of study in their own right. Additionally, the study of the creative industries affords insights into how we understand the current economic transformation towards knowledge- based economies more broadly. The transformation toward knowledge- based economies has been foreshadowed by the transformation of creative industries such as publishing, film, video, photography, music and so on...
Resumo:
This study is an in-depth examination of the stylistic and generic characteristics of the Japanese zombie film and its relations to Japanese horror cinema and the conventions and tropes of Western zombie movies more generally. Through generic analysis of key Japanese zombie films released over the last 15 years, this study establishes the sub-genre's ties to transnational production practices and cult cinema. The first monograph length study of this kind, this study provides insight into the growing sub-genre of Japanese zombie films while concurrently broadening current scholarship and understanding of the zombie film genre.
Resumo:
A quantum-spin-Hall (QSH) state was achieved experimentally, albeit at a low critical temperature because of the narrow band gap of the bulk material. Twodimensional topological insulators are critically important for realizing novel topological applications. Using density functional theory (DFT), we demonstrated that hydrogenated GaBi bilayers (HGaBi) form a stable topological insulator with a large nontrivial band gap of 0.320 eV, based on the state-of-the-art hybrid functional method, which is implementable for achieving QSH states at room temperature. The nontrivial topological property of the HGaBi lattice can also be confirmed from the appearance of gapless edge states in the nanoribbon structure. Our results provide a versatile platform for hosting nontrivial topological states usable for important nanoelectronic device applications.