256 resultados para spatial extrapolation
Resumo:
This paper describes ongoing work on a system using spatial descriptions to construct abstract maps that can be used for goal-directed exploration in an unfamiliar office environment. Abstract maps contain membership, connectivity, and spatial layout information extracted from symbolic spatial information. In goal-directed exploration, the robot would then link this information with observed symbolic information and its grounded world representation. We demonstrate the ability of the system to extract and represent membership, connectivity, and spatial layout information from spatial descriptions of an office environment. In the planned study, the robot will navigate to the goal location using the abstract map to inform the best direction to explore in.
Resumo:
Information available on company websites can help people navigate to the offices of groups and individuals within the company. Automatically retrieving this within-organisation spatial information is a challenging AI problem This paper introduces a novel unsupervised pattern-based method to extract within-organisation spatial information by taking advantage of HTML structure patterns, together with a novel Conditional Random Fields (CRF) based method to identify different categories of within-organisation spatial information. The results show that the proposed method can achieve a high performance in terms of F-Score, indicating that this purely syntactic method based on web search and an analysis of HTML structure is well-suited for retrieving within-organisation spatial information.
Resumo:
Metacognitive skills are considered to be essential for graduates from higher education institutions. In teaching spatial design, a fundamental aspect of student learning is the ability to ‘frame’ problems, generate solutions and explore possibilities of different solutions. This article proposes an innovative approach to design education through the implementation of strategies into the design process. The externalisation of implicit and tacit learning through metacognition connects theoretical concepts to interior design process and practice, as well as allowing students to engage and critically analyse issues surrounding theory and practice, thus equipping them with the skills as future design professionals.
Resumo:
Using the imagination during the design process is a critical part of how designers design, using it in the synthesis phase to generate ideas and find creative solutions to a given problem. However, what designers imagine - see in the mind’s eye - during the design process is a complex and difficult to articulate phenomenon, which, until recently, has been not been greatly understood or articulated. This early study reports on an education context where exercises were integrated into undergraduate design studies aimed to enhance the imagining process. Outcomes suggest that exercising the imagination in this context assists future designers to become more skilled in design synthesis practices which explore various temporal, existential and physical qualities in future spaces, as well as be able to articulate the seemingly ‘mysterious’ aspects of the design process.
Resumo:
Spatial data analysis has become more and more important in the studies of ecology and economics during the last decade. One focus of spatial data analysis is how to select predictors, variance functions and correlation functions. However, in general, the true covariance function is unknown and the working covariance structure is often misspecified. In this paper, our target is to find a good strategy to identify the best model from the candidate set using model selection criteria. This paper is to evaluate the ability of some information criteria (corrected Akaike information criterion, Bayesian information criterion (BIC) and residual information criterion (RIC)) for choosing the optimal model when the working correlation function, the working variance function and the working mean function are correct or misspecified. Simulations are carried out for small to moderate sample sizes. Four candidate covariance functions (exponential, Gaussian, Matern and rational quadratic) are used in simulation studies. With the summary in simulation results, we find that the misspecified working correlation structure can still capture some spatial correlation information in model fitting. When the sample size is large enough, BIC and RIC perform well even if the the working covariance is misspecified. Moreover, the performance of these information criteria is related to the average level of model fitting which can be indicated by the average adjusted R square ( [GRAPHICS] ), and overall RIC performs well.
Resumo:
Reduced economic circumstances havemoved management goals towards higher profit, rather than maximum sustainable yields in several Australian fisheries. The eastern king prawn is one such fishery, for which we have developed new methodology for stock dynamics, calculation of model-based and data-based reference points and management strategy evaluation. The fishery is notable for the northward movement of prawns in eastern Australian waters, from the State jurisdiction of New South Wales to that of Queensland, as they grow to spawning size, so that vessels fishing in the northern deeper waters harvest more large prawns. Bioeconomic fishing data were standardized for calibrating a length-structured spatial operating model. Model simulations identified that reduced boat numbers and fishing effort could improve profitability while retaining viable fishing in each jurisdiction. Simulations also identified catch rate levels that were effective for monitoring in simple within-year effort-control rules. However, favourable performance of catch rate indicators was achieved only when a meaningful upper limit was placed on total allowed fishing effort. Themethods and findings will allow improved measures for monitoring fisheries and inform decision makers on the uncertainty and assumptions affecting economic indicators.
Resumo:
There are numerous load estimation methods available, some of which are captured in various online tools. However, most estimators are subject to large biases statistically, and their associated uncertainties are often not reported. This makes interpretation difficult and the estimation of trends or determination of optimal sampling regimes impossible to assess. In this paper, we first propose two indices for measuring the extent of sampling bias, and then provide steps for obtaining reliable load estimates by minimizing the biases and making use of possible predictive variables. The load estimation procedure can be summarized by the following four steps: - (i) output the flow rates at regular time intervals (e.g. 10 minutes) using a time series model that captures all the peak flows; - (ii) output the predicted flow rates as in (i) at the concentration sampling times, if the corresponding flow rates are not collected; - (iii) establish a predictive model for the concentration data, which incorporates all possible predictor variables and output the predicted concentrations at the regular time intervals as in (i), and; - (iv) obtain the sum of all the products of the predicted flow and the predicted concentration over the regular time intervals to represent an estimate of the load. The key step to this approach is in the development of an appropriate predictive model for concentration. This is achieved using a generalized regression (rating-curve) approach with additional predictors that capture unique features in the flow data, namely the concept of the first flush, the location of the event on the hydrograph (e.g. rise or fall) and cumulative discounted flow. The latter may be thought of as a measure of constituent exhaustion occurring during flood events. The model also has the capacity to accommodate autocorrelation in model errors which are the result of intensive sampling during floods. Incorporating this additional information can significantly improve the predictability of concentration, and ultimately the precision with which the pollutant load is estimated. We also provide a measure of the standard error of the load estimate which incorporates model, spatial and/or temporal errors. This method also has the capacity to incorporate measurement error incurred through the sampling of flow. We illustrate this approach using the concentrations of total suspended sediment (TSS) and nitrogen oxide (NOx) and gauged flow data from the Burdekin River, a catchment delivering to the Great Barrier Reef. The sampling biases for NOx concentrations range from 2 to 10 times indicating severe biases. As we expect, the traditional average and extrapolation methods produce much higher estimates than those when bias in sampling is taken into account.
Resumo:
The biomass and species composition of tropical phytoplankton in Albatross Bay, Gulf of Carpentaria, northern Australia, were examined monthly for 6 yr (1986 to 1992). Chlorophyll a (chl a) concentrations were highest (2 to 5.7 mu g l(-1)) in the wet season at inshore sites, usually coinciding with low salinities (30 to 33 ppt) and high temperatures (29 to 32 degrees C). At the offshore sites chi a concentrations were lower (0.2 to 2 mu g l(-1)) and did not vary seasonally. Nitrate and phosphate concentrations were generally low (0 to 3.68 mu M and 0.09 to 3 mu M for nitrate and phosphate respectively), whereas silicate was present in concentrations in the range 0.19 to 13 mu M. The phytoplankton community was dominated by diatoms, particularly at the inshore sites, as determined by a combination of microscopic and high-performance liquid chromatography (HPLC) pigment analyses. At the offshore sites the proportion of green flagellates increased. The cyanobacterium genus Trichodesmium and the diatom genera Chaetoceros, Rhizosolenia, Bacteriastrum and Thalassionema dominated the phytoplankton caught in 37 mu m mesh nets; however, in contrast to many other coastal areas studied worldwide there was no distinct species succession of the diatoms and only Trichodesmium showed seasonal changes in abundance. This reflects a stable phytoplankton community in waters without pulses of physical and chemical disturbances. These results are discussed in the context of the commercial prawn fishery in the Gulf of Carpentaria and the possible effect of phytoplankton on prawn larval growth and survival.
Resumo:
Recent interest in affect and the body have mobilized a contemporary review of aesthetics and phenomenology within architecture to unpack how environments affect spatial experience. Emerging spatial studies within the neuro-sciences, and their implications for architectural research as raised by architectural theorists Juhani Pallasmaa (2014) and Harry Mallgrave (2013) has been well supported by a raft of scientists and institutions including the prestigious Salk Institute. Although there has been some headway in spatial studies of the vision impaired (Cattaneo et al, 2011) to understand the role of their non-visual systems in assisting navigation and location, little is discussed in terms of their other abilities in sensing particular qualities of space which impinge upon emotion. This paper reviews a collection of studies exploring face vision and echo-location, amongst others, which provide insight into what might be termed affective perception of the vision impaired, and how further interplay between this research and the architectural field can contribute new knowledge regarding space and affect. By engaging with themes from the Aesthetics, Phenomenology and indeed Neuro-science fields, the paper provides background of current and potential cross disciplinary research, and highlights the role wearable technologies can play in enhancing knowledge of affective spatial experience.
Resumo:
Over the last two decades, there has been an increasing awareness of, and interest in, the use of spatial moment techniques to provide insight into a range of biological and ecological processes. Models that incorporate spatial moments can be viewed as extensions of mean-field models. These mean-field models often consist of systems of classical ordinary differential equations and partial differential equations, whose derivation, at some point, hinges on the simplifying assumption that individuals in the underlying stochastic process encounter each other at a rate that is proportional to the average abundance of individuals. This assumption has several implications, the most striking of which is that mean-field models essentially neglect any impact of the spatial structure of individuals in the system. Moment dynamics models extend traditional mean-field descriptions by accounting for the dynamics of pairs, triples and higher n-tuples of individuals. This means that moment dynamics models can, to some extent, account for how the spatial structure affects the dynamics of the system in question.
Resumo:
Recent interest in affect and the body have mobilised a contemporary review of aesthetics and phenomenology within architecture to unpack how environments affect spatial experience. Emerging spatial studies within the neurosciences, and their implications for architectural research as raised by architectural theorists has been well supported by a raft of scientists and institutions. Although there has been some headway in spatial studies of the vision impaired (Cattaneo et al., 2011) to understand the role of their non-visual systems in assisting navigation and location, little is discussed in terms of their other abilities in sensing particular qualities of space which impinge upon emotion and wellbeing. This research explores, through published studies and constructed spatial interviews, the affective perception of the vision impaired and how further interplay between this research and the architectural field can contribute new knowledge regarding space and affect. The research aims to provide background of current and potential cross disciplinary research and highlight the role wearable technologies can play in enhancing knowledge of affective spatial experience.
Resumo:
Disease maps are effective tools for explaining and predicting patterns of disease outcomes across geographical space, identifying areas of potentially elevated risk, and formulating and validating aetiological hypotheses for a disease. Bayesian models have become a standard approach to disease mapping in recent decades. This article aims to provide a basic understanding of the key concepts involved in Bayesian disease mapping methods for areal data. It is anticipated that this will help in interpretation of published maps, and provide a useful starting point for anyone interested in running disease mapping methods for areal data. The article provides detailed motivation and descriptions on disease mapping methods by explaining the concepts, defining the technical terms, and illustrating the utility of disease mapping for epidemiological research by demonstrating various ways of visualising model outputs using a case study. The target audience includes spatial scientists in health and other fields, policy or decision makers, health geographers, spatial analysts, public health professionals, and epidemiologists.
Resumo:
A spatial sampling design that uses pair-copulas is presented that aims to reduce prediction uncertainty by selecting additional sampling locations based on both the spatial configuration of existing locations and the values of the observations at those locations. The novelty of the approach arises in the use of pair-copulas to estimate uncertainty at unsampled locations. Spatial pair-copulas are able to more accurately capture spatial dependence compared to other types of spatial copula models. Additionally, unlike traditional kriging variance, uncertainty estimates from the pair-copula account for influence from measurement values and not just the configuration of observations. This feature is beneficial, for example, for more accurate identification of soil contamination zones where high contamination measurements are located near measurements of varying contamination. The proposed design methodology is applied to a soil contamination example from the Swiss Jura region. A partial redesign of the original sampling configuration demonstrates the potential of the proposed methodology.
Resumo:
This paper examines the 2013 Australian federal election to test two competing models of vote choice: spatial politics and valence issues. Using data from the 2013 Australian Election Study, the analysis finds that spatial politics (measured by party identification and self-placement on the left-right spectrum) and valence issues both have significant effects on vote choice. However, spatial measures are more important than valence issues in explaining vote choice, in contrast with recent studies from Britain, Canada and the United States. Explanations for these differences are speculative, but may relate to Australia’s stable party and electoral system, including compulsory voting and the frequency of elections. The consequently high information burden faced by Australian voters may lead to a greater reliance on spatial heuristics than is found elsewhere.
Resumo:
The noted 19th century biologist, Ernst Haeckel, put forward the idea that the growth (ontogenesis) of an organism recapitulated the history of its evolutionary development. While this idea is defunct within biology, the idea has been promoted in areas such as education (the idea of an education being the repetition of the civilizations before). In the research presented in this paper, recapitulation is used as a metaphor within computer-aided design as a way of grouping together different generations of spatial layouts. In most CAD programs, a spatial layout is represented as a series of objects (lines, or boundary representations) that stand in as walls. The relationships between spaces are not usually explicitly stated. A representation using Lindenmayer Systems (originally designed for the purpose of modelling plant morphology) is put forward as a way of representing the morphology of a spatial layout. The aim of this research is not just to describe an individual layout, but to find representations that link together lineages of development. This representation can be used in generative design as a way of creating more meaningful layouts which have particular characteristics. The use of genetic operators (mutation and crossover) is also considered, making this representation suitable for use with genetic algorithms.