588 resultados para random network coding
Resumo:
Resilient organised crime groups survive and prosper despite law enforcement activity, criminal competition and market forces. Corrupt police networks, like any other crime network, must contain resiliency characteristics if they are to continue operation and avoid being closed down through detection and arrest of their members. This paper examines the resilience of a large corrupt police network, namely The Joke which operated in the Australian state of Queensland for a number of decades. The paper uses social network analysis tools to determine the resilient characteristics of the network. This paper also assumes that these characteristics will be different to those of mainstream organised crime groups because the police network operates within an established policing agency rather than as an independent entity hiding within the broader community.
Resumo:
This paper provides fundamental understanding for the use of cumulative plots for travel time estimation on signalized urban networks. Analytical modeling is performed to generate cumulative plots based on the availability of data: a) Case-D, for detector data only; b) Case-DS, for detector data and signal timings; and c) Case-DSS, for detector data, signal timings and saturation flow rate. The empirical study and sensitivity analysis based on simulation experiments have observed the consistency in performance for Case-DS and Case-DSS, whereas, for Case-D the performance is inconsistent. Case-D is sensitive to detection interval and signal timings within the interval. When detection interval is integral multiple of signal cycle then it has low accuracy and low reliability. Whereas, for detection interval around 1.5 times signal cycle both accuracy and reliability are high.
Resumo:
In this article I would like to examine the promise and possibilities of music, digital media and National Broadband Network. I will do this based on concepts that have emerged from a study undertaken by Professor Andrew Brown and I that categorise technologies into what we term representational technologies and technologies with agency
Resumo:
The availability of bridges is crucial to people’s daily life and national economy. Bridge health prediction plays an important role in bridge management because maintenance optimization is implemented based on prediction results of bridge deterioration. Conventional bridge deterioration models can be categorised into two groups, namely condition states models and structural reliability models. Optimal maintenance strategy should be carried out based on both condition states and structural reliability of a bridge. However, none of existing deterioration models considers both condition states and structural reliability. This study thus proposes a Dynamic Objective Oriented Bayesian Network (DOOBN) based method to overcome the limitations of the existing methods. This methodology has the ability to act upon as a flexible unifying tool, which can integrate a variety of approaches and information for better bridge deterioration prediction. Two demonstrative case studies are conducted to preliminarily justify the feasibility of the methodology
Resumo:
This project involved the complete refurbishment and extension of a 1980’s two-storey domestic brick building, previously used as a Boarding House (Class 3), into Middle School facilities (Class 9b) on a heritage listed site at Nudgee College secondary school, Brisbane. The building now accommodates 12 technologically advanced classrooms, computer lab and learning support rooms, tuckshop, art room, mini library/reading/stage area, dedicated work areas for science and large projects with access to water on both floors, staff facilities and an undercover play area suitable for assemblies and presentations. The project was based on a Reggio Emilia approach, in which the organisation of the physical environment is referred to as the child’s third teacher, creating opportunities for complex, varied, sustained and changing relationships between people and ideas. Classrooms open to a communal centre piazza and are integrated with the rest of the school and the school with the surrounding community. In order to achieve this linkage of the building with the overall masterplan of the site, a key strategy of the internal planning was to orientate teaching areas around a well defined active circulation space that breaks out of the building form to legibly define the new access points to the building and connect up to the pathway network of the campus. The width of the building allowed for classrooms and a generous corridor that has become ‘breakout’ teaching areas for art, IT, and small group activities. Large sliding glass walls allow teachers to maintain supervision of students across all areas and allow maximum light penetration through small domestic window openings into the deep and low-height spaces. The building was also designed with an effort to uphold cultural characteristics from the Edmund Rice Education Charter (2004). Coherent planning is accompanied by a quality fit-out, creating a vibrant and memorable environment in which to deliver the upper primary curriculum. Consistent with the Reggio Emilia approach, materials, expressive of the school’s colours, are used in a contemporary, adventurous manner to create panels of colour useful for massing and defining the ‘breakout’ teaching areas and paths of travel, and storage elements are detailed and arranged to draw attention to their aesthetic features. Modifications were difficult due to the random placement of load bearing walls, minimum ceiling heights, the general standard of finishes and new fire and energy requirements, however the reuse of this building was assessed to be up to 30% cheaper than an equivalent new building, The fit out integrates information technology and services at a level not usually found in primary school facilities. This has been achieved within the existing building fabric through thoughtful detailing and co-ordination with allied disciplines.
Resumo:
Diversity techniques have long been used to combat the channel fading in wireless communications systems. Recently cooperative communications has attracted lot of attention due to many benefits it offers. Thus cooperative routing protocols with diversity transmission can be developed to exploit the random nature of the wireless channels to improve the network efficiency by selecting multiple cooperative nodes to forward data. In this paper we analyze and evaluate the performance of a novel routing protocol with multiple cooperative nodes which share multiple channels. Multiple shared channels cooperative (MSCC) routing protocol achieves diversity advantage by using cooperative transmission. It unites clustering hierarchy with a bandwidth reuse scheme to mitigate the co-channel interference. Theoretical analysis of average packet reception rate and network throughput of the MSCC protocol are presented and compared with simulated results.
Resumo:
Networked control systems (NCSs) offer many advantages over conventional control; however, they also demonstrate challenging problems such as network-induced delay and packet losses. This paper proposes an approach of predictive compensation for simultaneous network-induced delays and packet losses. Different from the majority of existing NCS control methods, the proposed approach addresses co-design of both network and controller. It also alleviates the requirements of precise process models and full understanding of NCS network dynamics. For a series of possible sensor-to-actuator delays, the controller computes a series of corresponding redundant control values. Then, it sends out those control values in a single packet to the actuator. Once receiving the control packet, the actuator measures the actual sensor-to-actuator delay and computes the control signals from the control packet. When packet dropout occurs, the actuator utilizes past control packets to generate an appropriate control signal. The effectiveness of the approach is demonstrated through examples.
Resumo:
Online social networks can be found everywhere from chatting websites like MSN, blogs such as MySpace to social media such as YouTube and second life. Among them, there is one interesting type of online social networks, online dating network that is growing fast. This paper analyzes an online dating network from social network analysis point of view. Observations are made and results are obtained in order to suggest a better recommendation system for people-to-people networks.
Resumo:
This chapter argues that evolutionary economics should be founded upon complex systems theory rather than neo-Darwinian analogies concerning natural selection, which focus on supply side considerations and competition amongst firms and technologies. It suggests that conceptions such as production and consumption functions should be replaced by network representations, in which the preferences or, more correctly, the aspirations of consumers are fundamental and, as such, the primary drivers of economic growth. Technological innovation is viewed as a process that is intermediate between these aspirational networks, and the organizational networks in which goods and services are produced. Consumer knowledge becomes at least as important as producer knowledge in determining how economic value is generated. It becomes clear that the stability afforded by connective systems of rules is essential for economic flexibility to exist, but that too many rules result in inert and structurally unstable states. In contrast, too few rules result in a more stable state, but at a low level of ordered complexity. Economic evolution from this perspective is explored using random and scale free network representations of complex systems.
Resumo:
The head direction (HD) system in mammals contains neurons that fire to represent the direction the animal is facing in its environment. The ability of these cells to reliably track head direction even after the removal of external sensory cues implies that the HD system is calibrated to function effectively using just internal (proprioceptive and vestibular) inputs. Rat pups and other infant mammals display stereotypical warm-up movements prior to locomotion in novel environments, and similar warm-up movements are seen in adult mammals with certain brain lesion-induced motor impairments. In this study we propose that synaptic learning mechanisms, in conjunction with appropriate movement strategies based on warm-up movements, can calibrate the HD system so that it functions effectively even in darkness. To examine the link between physical embodiment and neural control, and to determine that the system is robust to real-world phenomena, we implemented the synaptic mechanisms in a spiking neural network and tested it on a mobile robot platform. Results show that the combination of the synaptic learning mechanisms and warm-up movements are able to reliably calibrate the HD system so that it accurately tracks real-world head direction, and that calibration breaks down in systematic ways if certain movements are omitted. This work confirms that targeted, embodied behaviour can be used to calibrate neural systems, demonstrates that ‘grounding’ of modeled biological processes in the real world can reveal underlying functional principles (supporting the importance of robotics to biology), and proposes a functional role for stereotypical behaviours seen in infant mammals and those animals with certain motor deficits. We conjecture that these calibration principles may extend to the calibration of other neural systems involved in motion tracking and the representation of space, such as grid cells in entorhinal cortex.
Resumo:
This paper presents a novel technique for performing SLAM along a continuous trajectory of appearance. Derived from components of FastSLAM and FAB-MAP, the new system dubbed Continuous Appearance-based Trajectory SLAM (CAT-SLAM) augments appearancebased place recognition with particle-filter based ‘pose filtering’ within a probabilistic framework, without calculating global feature geometry or performing 3D map construction. For loop closure detection CAT-SLAM updates in constant time regardless of map size. We evaluate the effectiveness of CAT-SLAM on a 16km outdoor road network and determine its loop closure performance relative to FAB-MAP. CAT-SLAM recognizes 3 times the number of loop closures for the case where no false positives occur, demonstrating its potential use for robust loop closure detection in large environments.
Resumo:
Power system dynamic analysis and security assessment are becoming more significant today due to increases in size and complexity from restructuring, emerging new uncertainties, integration of renewable energy sources, distributed generation, and micro grids. Precise modelling of all contributed elements/devices, understanding interactions in detail, and observing hidden dynamics using existing analysis tools/theorems are difficult, and even impossible. In this chapter, the power system is considered as a continuum and the propagated electomechanical waves initiated by faults and other random events are studied to provide a new scheme for stability investigation of a large dimensional system. For this purpose, the measured electrical indices (such as rotor angle and bus voltage) following a fault in different points among the network are used, and the behaviour of the propagated waves through the lines, nodes, and buses is analyzed. The impact of weak transmission links on a progressive electromechanical wave using energy function concept is addressed. It is also emphasized that determining severity of a disturbance/contingency accurately, without considering the related electromechanical waves, hidden dynamics, and their properties is not secure enough. Considering these phenomena takes heavy and time consuming calculation, which is not suitable for online stability assessment problems. However, using a continuum model for a power system reduces the burden of complex calculations
Resumo:
Complex networks have been studied extensively due to their relevance to many real-world systems such as the world-wide web, the internet, biological and social systems. During the past two decades, studies of such networks in different fields have produced many significant results concerning their structures, topological properties, and dynamics. Three well-known properties of complex networks are scale-free degree distribution, small-world effect and self-similarity. The search for additional meaningful properties and the relationships among these properties is an active area of current research. This thesis investigates a newer aspect of complex networks, namely their multifractality, which is an extension of the concept of selfsimilarity. The first part of the thesis aims to confirm that the study of properties of complex networks can be expanded to a wider field including more complex weighted networks. Those real networks that have been shown to possess the self-similarity property in the existing literature are all unweighted networks. We use the proteinprotein interaction (PPI) networks as a key example to show that their weighted networks inherit the self-similarity from the original unweighted networks. Firstly, we confirm that the random sequential box-covering algorithm is an effective tool to compute the fractal dimension of complex networks. This is demonstrated on the Homo sapiens and E. coli PPI networks as well as their skeletons. Our results verify that the fractal dimension of the skeleton is smaller than that of the original network due to the shortest distance between nodes is larger in the skeleton, hence for a fixed box-size more boxes will be needed to cover the skeleton. Then we adopt the iterative scoring method to generate weighted PPI networks of five species, namely Homo sapiens, E. coli, yeast, C. elegans and Arabidopsis Thaliana. By using the random sequential box-covering algorithm, we calculate the fractal dimensions for both the original unweighted PPI networks and the generated weighted networks. The results show that self-similarity is still present in generated weighted PPI networks. This implication will be useful for our treatment of the networks in the third part of the thesis. The second part of the thesis aims to explore the multifractal behavior of different complex networks. Fractals such as the Cantor set, the Koch curve and the Sierspinski gasket are homogeneous since these fractals consist of a geometrical figure which repeats on an ever-reduced scale. Fractal analysis is a useful method for their study. However, real-world fractals are not homogeneous; there is rarely an identical motif repeated on all scales. Their singularity may vary on different subsets; implying that these objects are multifractal. Multifractal analysis is a useful way to systematically characterize the spatial heterogeneity of both theoretical and experimental fractal patterns. However, the tools for multifractal analysis of objects in Euclidean space are not suitable for complex networks. In this thesis, we propose a new box covering algorithm for multifractal analysis of complex networks. This algorithm is demonstrated in the computation of the generalized fractal dimensions of some theoretical networks, namely scale-free networks, small-world networks, random networks, and a kind of real networks, namely PPI networks of different species. Our main finding is the existence of multifractality in scale-free networks and PPI networks, while the multifractal behaviour is not confirmed for small-world networks and random networks. As another application, we generate gene interactions networks for patients and healthy people using the correlation coefficients between microarrays of different genes. Our results confirm the existence of multifractality in gene interactions networks. This multifractal analysis then provides a potentially useful tool for gene clustering and identification. The third part of the thesis aims to investigate the topological properties of networks constructed from time series. Characterizing complicated dynamics from time series is a fundamental problem of continuing interest in a wide variety of fields. Recent works indicate that complex network theory can be a powerful tool to analyse time series. Many existing methods for transforming time series into complex networks share a common feature: they define the connectivity of a complex network by the mutual proximity of different parts (e.g., individual states, state vectors, or cycles) of a single trajectory. In this thesis, we propose a new method to construct networks of time series: we define nodes by vectors of a certain length in the time series, and weight of edges between any two nodes by the Euclidean distance between the corresponding two vectors. We apply this method to build networks for fractional Brownian motions, whose long-range dependence is characterised by their Hurst exponent. We verify the validity of this method by showing that time series with stronger correlation, hence larger Hurst exponent, tend to have smaller fractal dimension, hence smoother sample paths. We then construct networks via the technique of horizontal visibility graph (HVG), which has been widely used recently. We confirm a known linear relationship between the Hurst exponent of fractional Brownian motion and the fractal dimension of the corresponding HVG network. In the first application, we apply our newly developed box-covering algorithm to calculate the generalized fractal dimensions of the HVG networks of fractional Brownian motions as well as those for binomial cascades and five bacterial genomes. The results confirm the monoscaling of fractional Brownian motion and the multifractality of the rest. As an additional application, we discuss the resilience of networks constructed from time series via two different approaches: visibility graph and horizontal visibility graph. Our finding is that the degree distribution of VG networks of fractional Brownian motions is scale-free (i.e., having a power law) meaning that one needs to destroy a large percentage of nodes before the network collapses into isolated parts; while for HVG networks of fractional Brownian motions, the degree distribution has exponential tails, implying that HVG networks would not survive the same kind of attack.
Resumo:
Collaborative question answering (cQA) portals such as Yahoo! Answers allow users as askers or answer authors to communicate, and exchange information through the asking and answering of questions in the network. In their current set-up, answers to a question are arranged in chronological order. For effective information retrieval, it will be advantageous to have the users’ answers ranked according to their quality. This paper proposes a novel approach of evaluating and ranking the users’answers and recommending the top-n quality answers to information seekers. The proposed approach is based on a user-reputation method which assigns a score to an answer reflecting its answer author’s reputation level in the network. The proposed approach is evaluated on a dataset collected from a live cQA, namely, Yahoo! Answers. To compare the results obtained by the non-content-based user-reputation method, experiments were also conducted with several content-based methods that assign a score to an answer reflecting its content quality. Various combinations of non-content and content-based scores were also used in comparing results. Empirical analysis shows that the proposed method is able to rank the users’ answers and recommend the top-n answers with good accuracy. Results of the proposed method outperform the content-based methods, various combinations, and the results obtained by the popular link analysis method, HITS.