279 resultados para organic ionic plastic crystals


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have prepared p-n junction organic photovoltaic cells using an all solution processing method with poly(3-hexylthiophene) (P3HT) as the donor and phenyl-C 61-butyric acid methyl ester (PCBM) as the acceptor. Interdigitated donor/acceptor interface morphology was observed in the device processed with the lowest boiling point solvent for PCBM used in this study. The influences of different solvents on donor/acceptor morphology and respective device performance were investigated simultaneously. The best device obtained had characteristically rough interface morphology with a peak to valley value ∼15 nm. The device displayed a power conversion efficiency of 1.78%, an open circuit voltage (V oc) 0.44 V, a short circuit current density (J sc) 9.4 mA/cm 2 and a fill factor 43%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An innovative design strategy for light emitting field effect transistors (LEFETs) to harvest higher luminance and switching is presented. The strategy uses a non-planar electrode geometry in tri-layer LEFETs for simultaneous enhancement of the key parameters of quantum efficiency, brightness, switching, and mobility across the RGB color gamut.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The interaction at the interface between a metal electrode and photoactive polymer is crucial for overall performance and stability of organic photovoltaics (OPVs). In this article, we report a comparative study of the stability of thin film Ag and indium tin oxide (ITO) as electrodes when used in conjunction with an interfacial PEDOT:PSS layer for P3HT:PCBM blend OPV devices. XPS measurements were taken for Ag and ITO/PEDOT:PSS layered samples with different exposure times to ambient conditions (∼25 °C, ∼50% relative humidity) to investigate the migration of Ag and In into the PEDOT:PSS layer. The change in efficiency of OPVs with a longer exposure time and degree of migration is explained by the analysis of XPS results. We propose the mechanism behind the interactions occurring at the interfaces. The efficiency of the ITO electrode OPVs continuously decreased to below 10% of the initial efficiency. However, the Ag devices displayed a slower degradation and maintained 50% of the initial efficiency for the same period of time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Organic solvents are commonly used in ink precursors of Cu2ZnSnS4 (CZTS) nanocrystals to make thin films for applications such as solar cells. However, the traces of carbon residual left behind by the organic solvents after high-temperature annealing is generally considered to restrict the growth of nanocrystals to form large grains. This work reported the first systematic study on the influence of carbon content of organic solvents on the grain growth of CZTS nanomaterial during high temperature sulfurization annealing. Solvents with carbon atom per molecule varying from 3 to 10 were used to made ink of CZTS nanocrystals for thin film deposition. It has been found that, after high temperature sulfurization annealing, a bilayer structure was formed in the CZTS film using organic solvent containing 3 carbon atoms per solvent molecule based on glycerol and 1,3-propanediol. The top layer consisted of closelypacked large grains and the bottom layer was made of as-synthesized nanoparticles. In contrast, the CZTS film made with the solvent molecule with more carbon atoms including 1,5-pentanediol (5 carbon atoms) and 1,7-heptanediol (7 carbon atoms) consisted of nanoparticles embedded with large crystals. It is believed that the carbon residues left behind by the organic solvents affected the necking of CZTS nanocrystals to form large grains through influencing the surface property of nanocrystals. Furthermore, it has also been observed that the solvent affected the thickness of MoS2 layer which was formed between CZTS and Mo substrate. A thinner MoS2 film (50 nm) was obtained with the slurry using carbon-rich terpineol as solvent whereas the thickest MoS2 (350 nm) was obtained with the film made from 1,3-propanediol based solvent. The evaluation of the photoactivity of the CZTS thin films has demonstrated that a higher photocurrent was generated with the film containing more large grains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Application of "advanced analysis" methods suitable for non-linear analysis and design of steel frame structures permits direct and accurate determination of ultimate system strengths, without resort to simplified elastic methods of analysis and semi-empirical specification equations. However, the application of advanced analysis methods has previously been restricted to steel frames comprising only compact sections that are not influenced by the effects of local buckling. A concentrated plasticity formulation suitable for practical advanced analysis of steel frame structures comprising non-compact sections is presented in this paper. This formulation, referred to as the refined plastic hinge method, implicitly accounts for the effects of gradual cross-sectional yielding, longitudinal spread of plasticity, initial geometric imperfections, residual stresses, and local buckling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel, solution-processable non-fullerene electron acceptor 9,9′-(5,5-dioctyl-5H-dibenzo [b,d]silole-3,7-diyl)bis(2,7-dioctyl-4-(octylamino)benzo[lmn][3,8]phenanthroline-1,3,6,8(2H,7H)-tetraone) (B3) based on dibenzosilole and naphthalenediimide building blocks was designed, synthesized, characterized and successfully used in a bulk-heterojunction organic solar cell. B3 displayed excellent solubility, thermal stability and acquired electron energy levels matching with those of archetypal donor polymer poly(3-hexylthiophene). Solution-processable bulk-heterojunction devices afforded 1.16% power conversion efficiency with a high fill factor of 53%. B3 is the first example in the literature using this design principle, where mild donor units at the peripheries of end-capped naphthalenediimide units tune solubility and optical energy levels simultaneously.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diketopyrrolopyrole-naphthalene polymer (PDPP-TNT), a donor-acceptor co-polymer, has shown versatile behavior demonstrating high performances in organic field-effect transistors (OFETs) and organic photovoltaic (OPV) devices. In this paper we report investigation of charge carrier dynamics in PDPP-TNT, and [6,6]-phenyl C71 butyric acid methyl ester (PC71BM) bulk-heterojunction based inverted OPV devices using current density-voltage (J-V) characteristics, space charge limited current (SCLC) measurements, capacitance-voltage (C-V) characteristics, and impedance spectroscopy (IS). OPV devices in inverted architecture, ITO/ZnO/PDPP-TNT:PC71BM/MoO3/Ag, are processed and characterized at room conditions. The power conversion efficiency (PCE) of these devices are measured ∼3.8%, with reasonably good fill-factor 54.6%. The analysis of impedance spectra exhibits electron’s mobility ∼2 × 10−3 cm2V−1s−1, and lifetime in the range of 0.03-0.23 ms. SCLC measurements give hole mobility of 1.12 × 10−5 cm2V−1s−1, and electron mobility of 8.7 × 10−4 cm2V−1s−1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sugarcane bagasse pretreatment processes using acidified aqueous ethylene glycol (EG) and ionic liquids (ILs) have been reported recently. In this study, recovery of lignins from these processes was conducted, as well as determination of their physico-chemical properties. The amount of lignins recovered from 1-butyl-3-methylimidazolium chloride ([bmim]Cl) with HCl as a catalyst and [bmim][CH3SO3] was ∼42%, and ∼35%–36% by EG with HCl or H2SO4 as a catalyst, respectively. The isolated lignins were characterised using wet chemistry, spectroscopy and thermogravimetry analysis (TGA), and the results compared to soda lignin from NaOH pretreatment of bagasse. The IL and EG lignins contained no or trace amounts of carbohydrates, slightly lower hydrogen content but slightly higher oxygen contents than soda lignin. The IL and EG lignins contained more C-3 and C-5 reactive sites for Mannich reaction and had more p-hydroxypheny propane unit structures than soda lignin. Two-dimensional heteronuclear single quantum coherence (2D HSQC) nuclear magnetic resonance (NMR) identified the major substructural units in the lignins, and allowed differences among them to be studied. As EG lignins were extracted in very reactive environment, intermediate enol ethers were formed and led to cleavage reactions which were not apparent in the other lignins. 31P NMR and infra-red spectroscopy results showed that IL and EG lignins had lower total hydroxyl content than soda lignin, probably indicating that a higher degree of self-polymerisation occurred during bagasse pretreatment, despite the use of lower temperature and shorter reaction time. On the basis of the salient features of these lignins, potential applications were proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article, we report the crystal structures of five halogen bonded co-crystals comprising quaternary ammonium cations, halide anions (Cl– and Br–), and one of either 1,2-, 1,3-, or 1,4-diiodotetrafluorobenzene (DITFB). Three of the co-crystals are chemical isomers: 1,4-DITFB[TEA-CH2Cl]Cl, 1,2-DITFB[TEA-CH2Cl]Cl, and 1,3-DITFB[TEA-CH2Cl]Cl (where TEA-CH2Cl is chloromethyltriethylammonium ion). In each structure, the chloride anions link DITFB molecules through halogen bonds to produce 1D chains propagating with (a) linear topology in the structure containing 1,4-DITFB, (b) zigzag topology with 60° angle of propagation in that containing 1,2-DITFB, and (c) 120° angle of propagation with 1,3-DITFB. While the individual chains have highly distinctive and different topologies, they combine through π-stacking of the DITFB molecules to produce remarkably similar overall arrangements of molecules. Structures of 1,4-DITFB[TEA-CH2Br]Br and 1,3-DITFB[TEA-CH2Br]Br are also reported and are isomorphous with their chloro/chloride analogues, further illustrating the robustness of the overall supramolecular architecture. The usual approach to crystal engineering is to make structural changes to molecular components to effect specific changes to the resulting crystal structure. The results reported herein encourage pursuit of a somewhat different approach to crystal engineering. That is, to investigate the possibilities for engineering the same overall arrangement of molecules in crystals while employing molecular components that aggregate with entirely different supramolecular connectivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent advances in direct-use plasmonic-metal nanoparticles (NPs) as photocatalysts to drive organic synthesis reactions under visible-light irradiation have attracted great interest. Plasmonic-metal NPs are characterized by their strong interaction with visible light through excitation of the localized surface plasmon resonance (LSPR). Herein, we review recent developments in direct photocatalysis using plasmonic-metal NPs and their applications. We focus on the role played by the LSPR of the metal NPs in catalyzing organic transformations and, more broadly, the role that light irradiation plays in catalyzing the reactions. Through this, the reaction mechanisms that these light-excited energetic electrons promote will be highlighted. This review will be of particular interest to researchers who are designing and fabricating new plasmonic-metal NP photocatalysts by identifying important reaction mechanisms that occur through light irradiation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The “third-generation” 3D graphene structures, T-junction graphene micro-wells (T-GMWs) are produced on cheap polycrystalline Cu foils in a single-step, low-temperature (270 °C), energy-efficient, and environment-friendly dry plasma-enabled process. T-GMWs comprise vertical graphene (VG) petal-like sheets that seemlessly integrate with each other and the underlying horizontal graphene sheets by forming T-junctions. The microwells have the pico-to-femto-liter storage capacity and precipitate compartmentalized PBS crystals. The T-GMW films are transferred from the Cu substrates, without damage to the both, in de-ionized or tap water, at room temperature, and without commonly used sacrificial materials or hazardous chemicals. The Cu substrates are then re-used to produce similar-quality T-GMWs after a simple plasma conditioning. The isolated T-GMW films are transferred to diverse substrates and devices and show remarkable recovery of their electrical, optical, and hazardous NO2 gas sensing properties upon repeated bending (down to 1 mm radius) and release of flexible trasparent display plastic substrates. The plasma-enabled mechanism of T-GMW isolation in water is proposed and supported by the Cu plasma surface modification analysis. Our GMWs are suitable for various optoelectronic, sesning, energy, and biomedical applications while the growth approach is potentially scalable for future pilot-scale industrial production.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A nation-wide passive air sampling campaign recorded concentrations of persistent organic pollutants in Australia's atmosphere in 2012. XAD-based passive air samplers were deployed for one year at 15 sampling sites located in remote/background, agricultural and semi-urban and urban areas across the continent. Concentrations of 47 polychlorinated biphenyls ranged from 0.73 to 72 pg m-3 (median of 8.9 pg m-3) and were consistently higher at urban sites. The toxic equivalent concentration for the sum of 12 dioxin-like PCBs was low, ranging from below detection limits to 0.24 fg m-3 (median of 0.0086 fg m-3). Overall, the levels of polychlorinated biphenyls in Australia were among the lowest reported globally to date. Among the organochlorine pesticides, hexachlorobenzene had the highest (median of 41 pg m-3) and most uniform concentration (with a ratio between highest and lowest value [similar]5). Bushfires may be responsible for atmospheric hexachlorobenzene levels in Australia that exceeded Southern Hemispheric baseline levels by a factor of [similar]4. Organochlorine pesticide concentrations generally increased from remote/background and agricultural sites to urban sites, except for high concentrations of [small alpha]-endosulfan and DDTs at specific agricultural sites. Concentrations of heptachlor (0.47-210 pg m-3), dieldrin (ND-160 pg m-3) and trans- and cis-chlordanes (0.83-180 pg m-3, sum of) in Australian air were among the highest reported globally to date, whereas those of DDT and its metabolites (ND-160 pg m-3, sum of), [small alpha]-, [small beta]-, [gamma]- and [small delta]-hexachlorocyclohexane (ND-6.7 pg m-3, sum of) and [small alpha]-endosulfan (ND-27 pg m-3) were among the lowest.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As there are a myriad of micro organic pollutants that can affect the well-being of human and other organisms in the environment the need for an effective monitoring tool is eminent. Passive sampling techniques, which have been developed over the last decades, could provide several advantages to the conventional sampling methods including simpler sampling devices, more cost-effective sampling campaign, providing time-integrated load as well as representative average of concentrations of pollutants in the environment. Those techniques have been applied to monitor many pollutants caused by agricultural activities, i.e. residues of pesticides, veterinary drugs and so on. Several types of passive samplers are commercially available and their uses are widely accepted. However, not many applications of those techniques have been found in Japan, especially in the field of agricultural environment. This paper aims to introduce the field of passive sampling and then to describe some applications of passive sampling techniques in environmental monitoring studies related to the agriculture industry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Exposure to air pollutants, including diesel particulate matter, has been linked to adverse respiratory health effects. Inhaled diesel particulate matter contains adsorbed organic compounds. It is not clear whether the adsorbed organics or the residual components are more deleterious to airway cells. Using a physiologically relevant model, we investigated the role of diesel organic content on mediating cellular responses of primary human bronchial epithelial cells (HBECs) cultured at an air-liquid interface (ALI). Methods Primary HBECs were cultured and differentiated at ALI for at least 28 days. To determine which component is most harmful, we compared primary HBEC responses elicited by residual (with organics removed) diesel emissions (DE) to those elicited by neat (unmodified) DE for 30 and 60 minutes at ALI, with cigarette smoke condensate (CSC) as the positive control, and filtered air as negative control. Cell viability (WST-1 cell proliferation assay), inflammation (TNF-α, IL-6 and IL-8 ELISA) and changes in gene expression (qRT-PCR for HO-1, CYP1A1, TNF-α and IL-8 mRNA) were measured. Results Immunofluorescence and cytological staining confirmed the mucociliary phenotype of primary HBECs differentiated at ALI. Neat DE caused a comparable reduction in cell viability at 30 or 60 min exposures, whereas residual DE caused a greater reduction at 60 min. When corrected for cell viability, cytokine protein secretion for TNF-α, IL-6 and IL-8 were maximal with residual DE at 60 min. mRNA expression for HO-1, CYP1A1, TNF-α and IL-8 was not significantly different between exposures. Conclusion This study provides new insights into epithelial cell responses to diesel emissions using a physiologically relevant aerosol exposure model. Both the organic content and residual components of diesel emissions play an important role in determining bronchial epithelial cell response in vitro. Future studies should be directed at testing potentially useful interventions against the adverse health effects of air pollution exposure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Weak interactions between bromine, sulphur, and hydrogen are shown to stabilize 2D supramolecular monolayers at the liquid–solid interface. Three different thiophene-based semiconducting organic molecules assemble into close-packed ultrathin ordered layers. A combination of scanning tunneling microscopy (STM) and density functional theory (DFT) elucidates the interactions within the monolayer. Electrostatic interactions are identified as the driving force for intermolecular Br⋯Br and Br⋯H bonding. We find that the S⋯S interactions of the 2D supramolecular layers correlate with the hole mobilities of thin film transistors of the same materials.