496 resultados para multiple measurements
Speaker attribution of multiple telephone conversations using a complete-linkage clustering approach
Resumo:
In this paper we propose and evaluate a speaker attribution system using a complete-linkage clustering method. Speaker attribution refers to the annotation of a collection of spoken audio based on speaker identities. This can be achieved using diarization and speaker linking. The main challenge associated with attribution is achieving computational efficiency when dealing with large audio archives. Traditional agglomerative clustering methods with model merging and retraining are not feasible for this purpose. This has motivated the use of linkage clustering methods without retraining. We first propose a diarization system using complete-linkage clustering and show that it outperforms traditional agglomerative and single-linkage clustering based diarization systems with a relative improvement of 40% and 68%, respectively. We then propose a complete-linkage speaker linking system to achieve attribution and demonstrate a 26% relative improvement in attribution error rate (AER) over the single-linkage speaker linking approach.
Resumo:
From human biomonitoring data that are increasingly collected in the United States, Australia, and in other countries from large-scale field studies, we obtain snap-shots of concentration levels of various persistent organic pollutants (POPs) within a cross section of the population at different times. Not only can we observe the trends within this population with time, but we can also gain information going beyond the obvious time trends. By combining the biomonitoring data with pharmacokinetic modeling, we can re-construct the time-variant exposure to individual POPs, determine their intrinsic elimination half-lives in the human body, and predict future levels of POPs in the population. Different approaches have been employed to extract information from human biomonitoring data. Pharmacokinetic (PK) models were combined with longitudinal data1, with single2 or multiple3 average concentrations of a cross-sectional data (CSD), or finally with multiple CSD with or without empirical exposure data4. In the latter study, for the first time, the authors based their modeling outputs on two sets of CSD and empirical exposure data, which made it possible that their model outputs were further constrained due to the extensive body of empirical measurements. Here we use a PK model to analyze recent levels of PBDE concentrations measured in the Australian population. In this study, we are able to base our model results on four sets5-7 of CSD; we focus on two PBDE congeners that have been shown3,5,8-9 to differ in intake rates and half-lives with BDE-47 being associated with high intake rates and a short half-life and BDE-153 with lower intake rates and a longer half-life. By fitting the model to PBDE levels measured in different age groups in different years, we determine the level of intake of BDE-47 and BDE-153, as well as the half-lives of these two chemicals in the Australian population.
Resumo:
This paper proposes a framework to analyse performance on multiple choice questions with the focus on linguistic factors. Item Response Theory (IRT) is deployed to estimate ability and question difficulty levels. A logistic regression model is used to detect Differential Item Functioning questions. Probit models testify relationships between performance and linguistic factors controlling the effects of question construction and students’ background. Empirical results have important implications. The lexical density of stems affects performance. The use of non-Economics specialised vocabulary has differing impacts on the performance of students with different language backgrounds. The IRT-based ability and difficulty help explain performance variations.
Resumo:
None of currently used tonometers produce estimated IOP values that are free of errors. Measurement incredibility arises from indirect measurement of corneal deformation and the fact that pressure calculations are based on population averaged parameters of anterior segment. Reliable IOP values are crucial for understanding and monitoring of number of eye pathologies e.g. glaucoma. We have combined high speed swept source OCT with air-puff chamber. System provides direct measurement of deformation of cornea and anterior surface of the lens. This paper describes in details the performance of air-puff ssOCT instrument. We present different approaches of data presentation and analysis. Changes in deformation amplitude appears to be good indicator of IOP changes. However, it seems that in order to provide accurate intraocular pressure values an additional information on corneal biomechanics is necessary. We believe that such information could be extracted from data provided by air-puff ssOCT.
Resumo:
A newly developed computational approach is proposed in the paper for the analysis of multiple crack problems based on the eigen crack opening displacement (COD) boundary integral equations. The eigen COD particularly refers to a crack in an infinite domain under fictitious traction acting on the crack surface. With the concept of eigen COD, the multiple cracks in great number can be solved by using the conventional displacement discontinuity boundary integral equations in an iterative fashion with a small size of system matrix to determine all the unknown CODs step by step. To deal with the interactions among cracks for multiple crack problems, all cracks in the problem are divided into two groups, namely the adjacent group and the far-field group, according to the distance to the current crack in consideration. The adjacent group contains cracks with relatively small distances but strong effects to the current crack, while the others, the cracks of far-field group are composed of those with relatively large distances. Correspondingly, the eigen COD of the current crack is computed in two parts. The first part is computed by using the fictitious tractions of adjacent cracks via the local Eshelby matrix derived from the traction boundary integral equations in discretized form, while the second part is computed by using those of far-field cracks so that the high computational efficiency can be achieved in the proposed approach. The numerical results of the proposed approach are compared not only with those using the dual boundary integral equations (D-BIE) and the BIE with numerical Green's functions (NGF) but also with those of the analytical solutions in literature. The effectiveness and the efficiency of the proposed approach is verified. Numerical examples are provided for the stress intensity factors of cracks, up to several thousands in number, in both the finite and infinite plates.
Resumo:
A whole-genome scan was conducted to map quantitative trait loci (QTL) for BSE resistance or susceptibility. Cows from four half-sib families were included and 173 microsatellite markers were used to construct a 2835-cM (Kosambi) linkage map covering 29 autosomes and the pseudoautosomal region of the sex chromosome. Interval mapping by linear regression was applied and extended to a multiple-QTL analysis approach that used identified QTL on other chromosomes as cofactors to increase mapping power. In the multiple-QTL analysis, two genome-wide significant QTL (BTA17 and X/Y ps) and four genome-wide suggestive QTL (BTA1, 6, 13, and 19) were revealed. The QTL identified here using linkage analysis do not overlap with regions previously identified using TDT analysis. One factor that may explain the disparity between the results is that a more extensive data set was used in the present study. Furthermore, methodological differences between TDT and linkage analyses may affect the power of these approaches.
Resumo:
A new deterministic method for predicting simultaneous inbreeding coefficients at three and four loci is presented. The method involves calculating the conditional probability of IBD (identical by descent) at one locus given IBD at other loci, and multiplying this probability by the prior probability of the latter loci being simultaneously IBD. The conditional probability is obtained applying a novel regression model, and the prior probability from the theory of digenic measures of Weir and Cockerham. The model was validated for a finite monoecious population mating at random, with a constant effective population size, and with or without selfing, and also for an infinite population with a constant intermediate proportion of selfing. We assumed discrete generations. Deterministic predictions were very accurate when compared with simulation results, and robust to alternative forms of implementation. These simultaneous inbreeding coefficients were more sensitive to changes in effective population size than in marker spacing. Extensions to predict simultaneous inbreeding coefficients at more than four loci are now possible.
Resumo:
The use of Wireless Sensor Networks (WSNs) for Structural Health Monitoring (SHM) has become a promising approach due to many advantages such as low cost, fast and flexible deployment. However, inherent technical issues such as data synchronization error and data loss have prevented these distinct systems from being extensively used. Recently, several SHM-oriented WSNs have been proposed and believed to be able to overcome a large number of technical uncertainties. Nevertheless, there is limited research verifying the applicability of those WSNs with respect to demanding SHM applications like modal analysis and damage identification. This paper first presents a brief review of the most inherent uncertainties of the SHM-oriented WSN platforms and then investigates their effects on outcomes and performance of the most robust Output-only Modal Analysis (OMA) techniques when employing merged data from multiple tests. The two OMA families selected for this investigation are Frequency Domain Decomposition (FDD) and Data-driven Stochastic Subspace Identification (SSI-data) due to the fact that they both have been widely applied in the past decade. Experimental accelerations collected by a wired sensory system on a large-scale laboratory bridge model are initially used as clean data before being contaminated by different data pollutants in sequential manner to simulate practical SHM-oriented WSN uncertainties. The results of this study show the robustness of FDD and the precautions needed for SSI-data family when dealing with SHM-WSN uncertainties. Finally, the use of the measurement channel projection for the time-domain OMA techniques and the preferred combination of the OMA techniques to cope with the SHM-WSN uncertainties is recommended.
Resumo:
Oxidative stress caused by generation of free radicals and related reactive oxygen species (ROS) at the sites of deposition has been proposed as a mechanism for many of the adverse health outcomes associated with exposure to particulate matter (PM). Recently, a new profluorescent nitroxide molecular probe (BPEAnit) developed at QUT was applied in an entirely novel, rapid and non-cell based assay for assessing the oxidative potential of particles (i.e. potential of particles to induce oxidative stress). The technique was applied on particles produced by several combustion sources, namely cigarette smoke, diesel exhaust and wood smoke. One of the main findings from the initial studies undertaken at QUT was that the oxidative potential per PM mass significantly varies for different combustion sources as well as the type of fuel used and combustion conditions. However, possibly the most important finding from our studies was that there was a strong correlation between the organic fraction of particles and the oxidative potential measured by the PFN assay, which clearly highlights the importance of organic species in particle-induced toxicity.
Resumo:
Purpose. The purpose of this article was to present methods capable of estimating the size and shape of the human eye lens without resorting to phakometry or magnetic resonance imaging (MRI). Methods. Previously published biometry and phakometry data of 66 emmetropic eyes of 66 subjects (age range [18, 63] years, spherical equivalent range [−0.75, +0.75] D) were used to define multiple linear regressions for the radii of curvature and thickness of the lens, from which the lens refractive index could be derived. MRI biometry was also available for a subset of 30 subjects, from which regressions could be determined for the vertex radii of curvature, conic constants, equatorial diameter, volume, and surface area. All regressions were compared with the phakometry and MRI data; the radii of curvature regressions were also compared with a method proposed by Bennett and Royston et al. Results. The regressions were in good agreement with the original measurements. This was especially the case for the regressions of lens thickness, volume, and surface area, which each had an R2 > 0.6. The regression for the posterior radius of curvature had an R2 < 0.2, making this regression unreliable. For all other regressions we found 0.25 < R2 < 0.6. The Bennett-Royston method also produced a good estimation of the radii of curvature, provided its parameters were adjusted appropriately. Conclusions. The regressions presented in this article offer a valuable alternative in case no measured lens biometry values are available; however care must be taken for possible outliers.
Resumo:
Background: Ureaplasma species are the most prevalent isolates from women who deliver preterm. The MBA, a surface exposed lipoprotein, is a key virulence factor of ureaplasmas. We investigated MBA variation after chronic and acute intra-amniotic (IA) ureaplasma infections. Method: U. parvum serovar 3 (2x104 colony-forming-units) was injected IA into pregnant ewes at: 55 days gestation (d, term = 145d) (n=8); 117d (n=8) and 121d (n=8). Fetuses were delivered surgically (124d) and ureaplasmas cultured from amniotic fluid (AF), chorioamnion, fetal lung (FL) and umbilical cord were tested by western blot and PCR assays to demonstrate MBA and mba gene variation respectively. Tissue sections were sectioned and stained by haemotoxylin and eosin and inflammatory cell counts and pathology were reported (blinded to outcome). Results: Numerous MBA/mba variants were generated in vivo after chronic exposure to ureaplasma infection but after acute infection no variants (3d) or very few variants (7d) were generated. Identical MBA variants were detected within the AF and FL but different ureaplasma variants were detected within chorioamnion specimens. The severity of inflammation within chronically infected tissues varied between animals ranging from no inflammation to severe inflammation with/without fibrosis. Chorioamnion, FL and cord from the same animal demonstrated the same degree of inflammation. Conclusions: MBA/mba variation in vivo occurred after the initiation of the host immune response and we propose that ureaplasmas vary the MBA antigen to evade the host immune response. In some animals there was no inflammation despite colonisation with high numbers of ureaplasmas.
Resumo:
Ureaplasma species are the microorganisms most frequently associated with adverse pregnancy outcomes. The multiple banded antigen (MBA), a surface-exposed lipoprotein, is a key virulence factor of ureaplasmas. The MBA demonstrates size variation, which we have shown previously to be correlated with the severity of chorioamnion inflammation. We aimed to investigate U. parvum serovar 3 pathogenesis in vivo, using a sheep model, by investigating: MBA variation after long term (chronic) and short term (acute) durations of in utero ureaplasma infections, and the severity of chorioamnionitis and inflammation in other fetal tissues. Inocula of 2x107 colony-forming-units (CFU) of U. parvum serovar 3 (Up) or media controls (C) were injected intra-amniotically into pregnant ewes at one of three time points: day 55 (69d Up, n=8; C69, n=4); day 117 (7d Up, n=8; C7, n=2); and day 121 (3d Up, n=8; C3, n=2) of gestation (term=145-150d). At day 124, preterm fetuses were delivered surgically. Samples of chorioamnion, fetal lung, and umbilical cord were: (i) snap frozen for subsequent ureaplasma culture, and (ii) fixed, embedded, sectioned and stained by haematoxylin and eosin stain for histological analysis. Selected fetal lung clinical ureaplasma isolates were cloned and filtered to obtain cultures from a single CFU. Passage 1 and clone 2 ureaplasma cultures were tested by western blot to demonstrate MBA variation. In acute durations of ureaplasma infection no MBA variants (3d Up) or very few MBA variants (7d Up) were present when compared to the original inoculum. However, numerous MBA size variants were generated in vivo (alike within contiguous tissues, amniotic fluid and fetal lung, but different variants were present within chorioamnion), during chronic, 69d exposure to ureaplasma infection. For the first time we have shown that the degree of ureaplasma MBA variation in vivo increased with the duration of gestation.
Resumo:
Background Individual exposure to ultraviolet radiation (UVR) is challenging to measure, particularly for diseases with substantial latency periods between first exposure and diagnosis of outcome, such as cancer. To guide the choice of surrogates for long-term UVR exposure in epidemiologic studies, we assessed how well stable sun-related individual characteristics and environmental/meteorological factors predicted daily personal UVR exposure measurements. Methods We evaluated 123 United States Radiologic Technologists subjects who wore personal UVR dosimeters for 8 hours daily for up to 7 days (N = 837 days). Potential predictors of personal UVR derived from a self-administered questionnaire, and public databases that provided daily estimates of ambient UVR and weather conditions. Factors potentially related to personal UVR exposure were tested individually and in a model including all significant variables. Results The strongest predictors of daily personal UVR exposure in the full model were ambient UVR, latitude, daily rainfall, and skin reaction to prolonged sunlight (R2 = 0.30). In a model containing only environmental and meteorological variables, ambient UVR, latitude, and daily rainfall were the strongest predictors of daily personal UVR exposure (R2 = 0.25). Conclusions In the absence of feasible measures of individual longitudinal sun exposure history, stable personal characteristics, ambient UVR, and weather parameters may help estimate long-term personal UVR exposure.
Resumo:
Background: Intra-amniotic infection accounts for 30% of all preterm births (PTB), with the human Ureaplasma species being the most frequently identified microorganism from the placentas of women who deliver preterm. The highest prevalence of PTB occurs late preterm (32-36 weeks) but no studies have investigated the role of infectious aetiologies associated with late preterm birth. Method: Placentas from women with late PTB were dissected aseptically and samples of chorioamnion tissue and membrane swabs were collected. These were tested for Ureaplasma spp. and aerobic/anaerobic bacteria by culture and real-time PCR. Western blot was used to assess MBA variation in ureaplasma clinical isolates. The presence of microorganisms was correlated with histological chorioamnionitis. Results: Ureaplasma spp. were isolated from 33/466 (7%) of placentas by culture or PCR. The presence of ureaplasmas, but not other microorganisms, was associated with histological chorioamnionitis (21/33 ureaplasma-positive vs. 8/42 other bacteria; p= 0.001). Ureaplasma clinical isolates demonstrating no MBA variation were associated with histological chorioamnionitis. By contrast, ureaplasmas displaying MBA variation were isolated from placentas with no significant histological chorioamnionitis (p= 0.001). Conclusion: Ureaplasma spp. within placentas delivered late preterm (7%) is associated with histological chorioamnionitis (p = 0.001). Decreased inflammation within chorioamnion was observed when the clinical ureaplasma isolates demonstrated variation of their surface-exposed lipoproteins (MBA). This variation may be a mechanism by which ureaplasmas modulate and evade the host immune response. So whilst ureaplasmas are present intra-amniotically they are not suspected because of the normal macroscopic appearance of the placentas and the amniotic fluid.
Resumo:
Observational studies suggest that people with a high serum 25-hydroxyvitamin D (25(OH)D) concentration may have reduced risk of chronic diseases such as osteoporosis, multiple sclerosis, type 1 diabetes, cardiovascular disease, and some cancers. The AusD Study (A Quantitative Assessment of Solar UV Exposure for Vitamin D Synthesis in Australian Adults) was conducted to clarify the relationships between ultraviolet (UV) radiation exposure, dietary intake of vitamin D, and serum 25(OH)D concentration among Australian adults residing in Townsville (19.3°S), Brisbane (27.5°S), Canberra (35.3°S), and Hobart (42.8°S). Participants aged 18-75 years were recruited from the Australian Electoral Roll between 2009 and 2010. Measurements were made of height, weight, waist:hip ratio, skin, hair, and eye color, blood pressure, and grip strength. Participants completed a questionnaire on sun exposure and vitamin D intake, together with 10 days of personal UV dosimetry and an associated sun-exposure and physical-activity diary that was temporally linked to a blood test for measurement of 25(OH)D concentration. Ambient solar UV radiation was also monitored at all study sites. We collected comprehensive, high-quality data from 1,002 participants (459 males, 543 females) assessed simultaneously across a range of latitudes and through all seasons. Here we describe the scientific and methodological issues considered in designing the AusD Study.