585 resultados para micromechanical damage theory
Resumo:
Left realists contend that people lacking legitimate means of solving the problem of relative deprivation may come into contact with other frustrated disenfranchised people and form subcultures, which in turn, encourage criminal behaviors. Absent from this theory is an attempt to address how, today, subcultural development in North America and elsewhere is heavily shaped simultaneously by the recent destructive consequences of right-wing Friedman or Chicago School economic policies and marginalized men's attempts to live up to the principles of hegemonic masculinity. The purpose of this paper, then, is to offer a new left realist theory that emphasizes the contribution of these two key determinants.
Resumo:
"There once was a man who aspired to be the author of the general theory of holes. When asked ‘What kind of hole—holes dug by children in the sand for amusement, holes dug by gardeners to plant lettuce seedlings, tank traps, holes made by road makers?’ he would reply indignantly that he wished for a general theory that would explain all of these. He rejected ab initio the—as he saw it—pathetically common-sense view that of the digging of different kinds of holes there are quite different kinds of explanations to be given; why then he would ask do we have the concept of a hole? Lacking the explanations to which he originally aspired, he then fell to discovering statistically significant correlations; he found for example that there is a correlation between the aggregate hole-digging achievement of a society as measured, or at least one day to be measured, by econometric techniques, and its degree of techno- logical development. The United States surpasses both Paraguay and Upper Volta in hole-digging; there are more holes in Vietnam than there were. These observations, he would always insist, were neutral and value-free. This man’s achievement has passed totally unnoticed except by me. Had he however turned his talents to political science, had he concerned himself not with holes, but with modernization, urbanization or violence, I find it difficult to believe that he might not have achieved high office in the APSA." (MacIntyre 1971, 260)
Resumo:
This volume aims to 'bring the state back into terrorism studies' and fill the notable gap that currently exists in our understanding of the ways in which states employ terrorism as a political strategy of internal governance or foreign policy. Within this broader context, the volume has a number of specific aims. First, it aims to make the argument that state terrorism is a valid and analytically useful concept which can do much to illuminate our understanding of state repression and governance, and illustrate the varieties of actors, modalities, aims, forms, and outcomes of this form of contemporary political violence. Secondly, by discussing a rich and diverse set of empirical case studies of contemporary state terrorism this volume explores and tests theoretical notions, generates new questions and provides a resource for further research. Thirdly, it contributes to a critical-normative approach to the study of terrorism more broadly and challenges dominant approaches and perspectives which assume that states, particularly Western states, are primarily victims and not perpetrators of terrorism. Given the scarceness of current and past research on state terrorism, this volume will make a genuine contribution to the wider field, particularly in terms of ongoing efforts to generate more critical approaches to the study of political terrorism. This book will be of much interest to students of critical terrorism studies, critical security studies, terrorism and political violence and political theory in general.
Resumo:
Design Science Research (DSR) has emerged as an important approach in Information Systems (IS) research. However, DSR is still in its genesis and has yet to achieve consensus on even the fundamentals, such as what methodology / approach to use for DSR. While there has been much effort to establish DSR methodologies, a complete, holistic and validated approach for the conduct of DSR to guide IS researcher (especially novice researchers) is yet to be established. Alturki et al. (2011) present a DSR ‘Roadmap’, making the claim that it is a complete and comprehensive guide for conducting DSR. This paper aims to further assess this Roadmap, by positioning it against the ‘Idealized Model for Theory Development’ (IM4TD) (Fischer & Gregor 2011). The IM4TD highlights the role of discovery and justification and forms of reasoning to progress in theory development. Fischer and Gregor (2011) have applied IM4TD’s hypothetico-deductive method to analyze DSR methodologies, which is adopted in this study to deductively validate the Alturki et al. (2011) Roadmap. The results suggest that the Roadmap adheres to the IM4TD, is reasonably complete, overcomes most shortcomings identified in other DSR methodologies and also highlights valuable refinements that should be considered within the IM4TD.
Resumo:
Background: Most skin cancers are preventable by encouraging consistent use of sun protective behaviour. In Australia, adolescents have high levels of knowledge and awareness of the risks of skin cancer but exhibit significantly lower sun protection behaviours than adults. There is limited research aimed at understanding why people do or do not engage in sun protective behaviour, and an associated absence of theory-based interventions to improve sun safe behaviour. This paper presents the study protocol for a school-based intervention which aims to improve the sun safe behaviour of adolescents. Methods/design: Approximately 400 adolescents (aged 12-17 years) will be recruited through Queensland, Australia public and private schools and randomized to the intervention (n = 200) or 'wait-list' control group (n = 200). The intervention focuses on encouraging supportive sun protective attitudes and beliefs, fostering perceptions of normative support for sun protection behaviour, and increasing perceptions of control/self-efficacy over using sun protection. It will be delivered during three × one hour sessions over a three week period from a trained facilitator during class time. Data will be collected one week pre-intervention (Time 1), and at one week (Time 2) and four weeks (Time 3) post-intervention. Primary outcomes are intentions to sun protect and sun protection behaviour. Secondary outcomes include attitudes toward performing sun protective behaviours (i.e., attitudes), perceptions of normative support to sun protect (i.e., subjective norms, group norms, and image norms), and perceived control over performing sun protective behaviours (i.e., perceived behavioural control). Discussion: The study will provide valuable information about the effectiveness of the intervention in improving the sun protective behaviour of adolescents.
Resumo:
资格预审是招标程序中重要环节.通过对投标人的资质和业绩等审查既能保证不符合 要求的投标人尽可能早地退出无谓竞争的行列,避免了大量人力"物力的损失和浪费, 又能促进建筑市场优胜劣汰,提高企业竞争力.同时鉴于目前资格预审和建筑市场存在 的问题,笔者以为通过强化资格预审可以有效推进建筑市场信用体系建设,促进行业健康发展,并且深入探讨了资格预审体系建立的具体对策和措施.
Resumo:
This paper presents two novel concepts to enhance the accuracy of damage detection using the Modal Strain Energy based Damage Index (MSEDI) with the presence of noise in the mode shape data. Firstly, the paper presents a sequential curve fitting technique that reduces the effect of noise on the calculation process of the MSEDI, more effectively than the two commonly used curve fitting techniques; namely, polynomial and Fourier’s series. Secondly, a probability based Generalized Damage Localization Index (GDLI) is proposed as a viable improvement to the damage detection process. The study uses a validated ABAQUS finite-element model of a reinforced concrete beam to obtain mode shape data in the undamaged and damaged states. Noise is simulated by adding three levels of random noise (1%, 3%, and 5%) to the mode shape data. Results show that damage detection is enhanced with increased number of modes and samples used with the GDLI.
Resumo:
The study presents a multi-layer genetic algorithm (GA) approach using correlation-based methods to facilitate damage determination for through-truss bridge structures. To begin, the structure’s damage-suspicious elements are divided into several groups. In the first GA layer, the damage is initially optimised for all groups using correlation objective function. In the second layer, the groups are combined to larger groups and the optimisation starts over at the normalised point of the first layer result. Then the identification process repeats until reaching the final layer where one group includes all structural elements and only minor optimisations are required to fine tune the final result. Several damage scenarios on a complicated through-truss bridge example are nominated to address the proposed approach’s effectiveness. Structural modal strain energy has been employed as the variable vector in the correlation function for damage determination. Simulations and comparison with the traditional single-layer optimisation shows that the proposed approach is efficient and feasible for complicated truss bridge structures when the measurement noise is taken into account.
Resumo:
As a part of vital infrastructure and transportation network, bridge structures must function safely at all times. Bridges are designed to have a long life span. At any point in time, however, some bridges are aged. The ageing of bridge structures, given the rapidly growing demand of heavy and fast inter-city passages and continuous increase of freight transportation, would require diligence on bridge owners to ensure that the infrastructure is healthy at reasonable cost. In recent decades, a new technique, structural health monitoring (SHM), has emerged to meet this challenge. In this new engineering discipline, structural modal identification and damage detection have formed a vital component. Witnessed by an increasing number of publications is that the change in vibration characteristics is widely and deeply investigated to assess structural damage. Although a number of publications have addressed the feasibility of various methods through experimental verifications, few of them have focused on steel truss bridges. Finding a feasible vibration-based damage indicator for steel truss bridges and solving the difficulties in practical modal identification to support damage detection motivated this research project. This research was to derive an innovative method to assess structural damage in steel truss bridges. First, it proposed a new damage indicator that relies on optimising the correlation between theoretical and measured modal strain energy. The optimisation is powered by a newly proposed multilayer genetic algorithm. In addition, a selection criterion for damage-sensitive modes has been studied to achieve more efficient and accurate damage detection results. Second, in order to support the proposed damage indicator, the research studied the applications of two state-of-the-art modal identification techniques by considering some practical difficulties: the limited instrumentation, the influence of environmental noise, the difficulties in finite element model updating, and the data selection problem in the output-only modal identification methods. The numerical (by a planer truss model) and experimental (by a laboratory through truss bridge) verifications have proved the effectiveness and feasibility of the proposed damage detection scheme. The modal strain energy-based indicator was found to be sensitive to the damage in steel truss bridges with incomplete measurement. It has shown the damage indicator's potential in practical applications of steel truss bridges. Lastly, the achievement and limitation of this study, and lessons learnt from the modal analysis have been summarised.
Resumo:
Organizations adopt a Supply Chain Management System (SCMS) expecting benefits to the organization and its functions. However, organizations are facing mounting challenges to realizing benefits through SCMS. Studies suggest a growing dissatisfaction among client organizations due to an increasing gap between expectations and realization of SCMS benefits. Further, reflecting the Enterprise System studies such as Seddon et al. (2010), SCMS benefits are also expected to flow to the organization throughout its lifecycle rather than being realized all at once. This research therefore proposes to derive a lifecycle-wide understanding of SCMS benefits and realization to derive a benefit expectation management framework to attain the full potential of an SCMS. The primary research question of this study is: How can client organizations better manage their benefit expectations of SCM systems? The specific research goals of the current study include: (1) to better understand the misalignment of received and expected benefits of SCM systems; (2) to identify the key factors influencing SCM system expectations and to develop a framework to manage SCMS benefits; (3) to explore how organizational satisfaction is influenced by the lack of SCMS benefit confirmation; and (4) to explore how to improve the realization of SCM system benefits. Expectation-Confirmation Theory (ECT) provides the theoretical underpinning for this study. ECT has been widely used in the consumer behavior literature to study customer satisfaction, post-purchase behavior and service marketing in general. Recently, ECT has been extended into Information Systems (IS) research focusing on individual user satisfaction and IS continuance. However, only a handful of studies have employed ECT to study organizational satisfaction on large-scale IS. The current study will enrich the research stream by extending ECT into organizational-level analysis and verifying the preliminary findings of relevant works by Staples et al. (2002), Nevo and Chan (2007) and Nevo and Wade (2007). Moreover, this study will go further trying to operationalize the constructs of ECT into the context of SCMS. The empirical findings of the study commence with a content analysis, through which 41 vendor reports and academic reports are analyzed yielding sixty expected benefits of SCMS. Then, the expected benefits are compared with the benefits realized at a case organization in the Fast Moving Consumer Goods industry sector that had implemented a SAP Supply Chain Management System seven years earlier. The study develops an SCMS Benefit Expectation Management (SCMS-BEM) Framework. The comparison of benefit expectations and confirmations highlights that, while certain benefits are realized earlier in the lifecycle, other benefits could take almost a decade to realize. Further analysis and discussion on how the developed SCMS-BEM Framework influences ECT when applied in SCMS was also conducted. It is recommended that when establishing their expectations of the SCMS, clients should remember that confirmation of these expectations will have a long lifecycle, as shown in the different time periods in the SCMS-BEM Framework. Moreover, the SCMS-BEM Framework will allow organizations to maintain high levels of satisfaction through careful mitigation and confirming expectations based on the lifecycle phase. In addition, the study reveals that different stakeholder groups have different expectations of the same SCMS. The perspective of multiple stakeholders has significant implications for the application of ECT in the SCMS context. When forming expectations of the SCMS, the collection of organizational benefits of SCMS should represent the perceptions of all stakeholder groups. The same mechanism should be employed in the measurements of received SCMS benefits. Moreover, for SCMS, there exists interdependence of the satisfaction among the various stakeholders. The satisfaction of decision-makers or the authorized staff is not only driven by their own expectation confirmation level, it is also influenced by the confirmation level of other stakeholders‘ expectations in the organization. Satisfaction from any one particular stakeholder group can not reflect the true satisfaction of the client organization. Furthermore, it is inferred from the SCMS-BEM Framework that organizations should place emphasis on the viewpoints of the operational and management staff when evaluating the benefits of SCMS in the short and middle term. At the same time, organizations should be placing more attention on the perspectives of strategic staff when evaluating the performance of the SCMS in the long term.
Resumo:
Structural health monitoring (SHM) refers to the procedure used to assess the condition of structures so that their performance can be monitored and any damage can be detected early. Early detection of damage and appropriate retrofitting will aid in preventing failure of the structure and save money spent on maintenance or replacement and ensure the structure operates safely and efficiently during its whole intended life. Though visual inspection and other techniques such as vibration based ones are available for SHM of structures such as bridges, the use of acoustic emission (AE) technique is an attractive option and is increasing in use. AE waves are high frequency stress waves generated by rapid release of energy from localised sources within a material, such as crack initiation and growth. AE technique involves recording these waves by means of sensors attached on the surface and then analysing the signals to extract information about the nature of the source. High sensitivity to crack growth, ability to locate source, passive nature (no need to supply energy from outside, but energy from damage source itself is utilised) and possibility to perform real time monitoring (detecting crack as it occurs or grows) are some of the attractive features of AE technique. In spite of these advantages, challenges still exist in using AE technique for monitoring applications, especially in the area of analysis of recorded AE data, as large volumes of data are usually generated during monitoring. The need for effective data analysis can be linked with three main aims of monitoring: (a) accurately locating the source of damage; (b) identifying and discriminating signals from different sources of acoustic emission and (c) quantifying the level of damage of AE source for severity assessment. In AE technique, the location of the emission source is usually calculated using the times of arrival and velocities of the AE signals recorded by a number of sensors. But complications arise as AE waves can travel in a structure in a number of different modes that have different velocities and frequencies. Hence, to accurately locate a source it is necessary to identify the modes recorded by the sensors. This study has proposed and tested the use of time-frequency analysis tools such as short time Fourier transform to identify the modes and the use of the velocities of these modes to achieve very accurate results. Further, this study has explored the possibility of reducing the number of sensors needed for data capture by using the velocities of modes captured by a single sensor for source localization. A major problem in practical use of AE technique is the presence of sources of AE other than crack related, such as rubbing and impacts between different components of a structure. These spurious AE signals often mask the signals from the crack activity; hence discrimination of signals to identify the sources is very important. This work developed a model that uses different signal processing tools such as cross-correlation, magnitude squared coherence and energy distribution in different frequency bands as well as modal analysis (comparing amplitudes of identified modes) for accurately differentiating signals from different simulated AE sources. Quantification tools to assess the severity of the damage sources are highly desirable in practical applications. Though different damage quantification methods have been proposed in AE technique, not all have achieved universal approval or have been approved as suitable for all situations. The b-value analysis, which involves the study of distribution of amplitudes of AE signals, and its modified form (known as improved b-value analysis), was investigated for suitability for damage quantification purposes in ductile materials such as steel. This was found to give encouraging results for analysis of data from laboratory, thereby extending the possibility of its use for real life structures. By addressing these primary issues, it is believed that this thesis has helped improve the effectiveness of AE technique for structural health monitoring of civil infrastructures such as bridges.