311 resultados para machine traffic
Resumo:
Product Ecosystem theory is an emerging theory that shows that disruptive “game changing” innovation is only possible when the entire ecosystem is considered. When environmental variables change faster than products or services can adapt, disruptive innovation is required to keep pace. This has many parallels with natural ecosystems where species that cannot keep up with changes to the environment will struggle or become extinct. In this case the environment is the city, the environmental pressures are pollution and congestion, the product is the car and the product ecosystem is comprised of roads, bridges, traffic lights, legislation, refuelling facilities etc. Each one of these components is the responsibility of a different organisation and so any change that affects the whole ecosystem requires a transdisciplinary approach. As a simple example, cars that communicate wirelessly with traffic lights are only of value if wireless-enabled traffic lights exist and vice versa. Cars that drive themselves are technically possible but legislation in most places doesn’t allow their use. According to innovation theory, incremental innovation tends to chase ever diminishing returns and becomes increasingly unable to tackle the “big issues.” Eventually “game changing” disruptive innovation comes along and solves the “big issues” and/or provides new opportunities. Seen through this lens, the environmental pressures of urban traffic congestion and pollution are the “big issues.” It can be argued that the design of cars and the other components of the product ecosystem follow an incremental innovation approach. That is why the “big issues” remain unresolved. This paper explores the problems of pollution and congestion in urban environments from a Product Ecosystem perspective. From this a strategy will be proposed for a transdisciplinary approach to develop and implement solutions.
Resumo:
This paper reports profiling information for speeding offenders and is part of a larger project that assessed the deterrent effects of increased speeding penalties in Queensland, Australia, using a total of 84,456 speeding offences. The speeding offenders were classified into three groups based on the extent and severity of an index offence: once-only low-rang offenders; repeat high-range offenders; and other offenders. The three groups were then compared in terms of personal characteristics, traffic offences, crash history and criminal history. Results revealed a number of significant differences between repeat high-range offenders and those in the other two offender groups. Repeat high-range speeding offenders were more likely to be male, younger, hold a provisional and a motorcycle licence, to have committed a range of previous traffic offences, to have a significantly greater likelihood of crash involvement, and to have been involved in multiple-vehicle crashes than drivers in the other two offender types. Additionally, when a subset of offenders’ criminal histories were examined, results revealed that repeat high-range speeding offenders were also more likely to have committed a previous criminal offence compared to once only low-range and other offenders and that 55.2% of the repeat high-range offenders had a criminal history. They were also significantly more likely to have committed drug offences and offences against order than the once only low-range speeding offenders, and significantly more likely to have committed regulation offences than those in the other offenders group. Overall, the results indicate that speeding offenders are not an homogeneous group and that, therefore, more tailored and innovative sanctions should be considered and evaluated for high-range recidivist speeders because they are a high-risk road user group.
Resumo:
This thesis presents an association rule mining approach, association hierarchy mining (AHM). Different to the traditional two-step bottom-up rule mining, AHM adopts one-step top-down rule mining strategy to improve the efficiency and effectiveness of mining association rules from datasets. The thesis also presents a novel approach to evaluate the quality of knowledge discovered by AHM, which focuses on evaluating information difference between the discovered knowledge and the original datasets. Experiments performed on the real application, characterizing network traffic behaviour, have shown that AHM achieves encouraging performance.
Resumo:
Heart rate variability (HRV) refers to the regulation of the sinoatrial node, the natural pacemaker of the heart by the sympathetic and parasympathetic branches of the autonomic nervous system. HRV analysis is an important tool to observe the heart’s ability to respond to normal regulatory impulses that affect its rhythm. Like many bio-signals, HRV signals are non-linear in nature. Higher order spectral analysis (HOS) is known to be a good tool for the analysis of non-linear systems and provides good noise immunity. A computer-based arrhythmia detection system of cardiac states is very useful in diagnostics and disease management. In this work, we studied the identification of the HRV signals using features derived from HOS. These features were fed to the support vector machine (SVM) for classification. Our proposed system can classify the normal and other four classes of arrhythmia with an average accuracy of more than 85%.
Resumo:
Problem addressed Wrist-worn accelerometers are associated with greater compliance. However, validated algorithms for predicting activity type from wrist-worn accelerometer data are lacking. This study compared the activity recognition rates of an activity classifier trained on acceleration signal collected on the wrist and hip. Methodology 52 children and adolescents (mean age 13.7 +/- 3.1 year) completed 12 activity trials that were categorized into 7 activity classes: lying down, sitting, standing, walking, running, basketball, and dancing. During each trial, participants wore an ActiGraph GT3X+ tri-axial accelerometer on the right hip and the non-dominant wrist. Features were extracted from 10-s windows and inputted into a regularized logistic regression model using R (Glmnet + L1). Results Classification accuracy for the hip and wrist was 91.0% +/- 3.1% and 88.4% +/- 3.0%, respectively. The hip model exhibited excellent classification accuracy for sitting (91.3%), standing (95.8%), walking (95.8%), and running (96.8%); acceptable classification accuracy for lying down (88.3%) and basketball (81.9%); and modest accuracy for dance (64.1%). The wrist model exhibited excellent classification accuracy for sitting (93.0%), standing (91.7%), and walking (95.8%); acceptable classification accuracy for basketball (86.0%); and modest accuracy for running (78.8%), lying down (74.6%) and dance (69.4%). Potential Impact Both the hip and wrist algorithms achieved acceptable classification accuracy, allowing researchers to use either placement for activity recognition.
Resumo:
Objectives Recent research has shown that machine learning techniques can accurately predict activity classes from accelerometer data in adolescents and adults. The purpose of this study is to develop and test machine learning models for predicting activity type in preschool-aged children. Design Participants completed 12 standardised activity trials (TV, reading, tablet game, quiet play, art, treasure hunt, cleaning up, active game, obstacle course, bicycle riding) over two laboratory visits. Methods Eleven children aged 3–6 years (mean age = 4.8 ± 0.87; 55% girls) completed the activity trials while wearing an ActiGraph GT3X+ accelerometer on the right hip. Activities were categorised into five activity classes: sedentary activities, light activities, moderate to vigorous activities, walking, and running. A standard feed-forward Artificial Neural Network and a Deep Learning Ensemble Network were trained on features in the accelerometer data used in previous investigations (10th, 25th, 50th, 75th and 90th percentiles and the lag-one autocorrelation). Results Overall recognition accuracy for the standard feed forward Artificial Neural Network was 69.7%. Recognition accuracy for sedentary activities, light activities and games, moderate-to-vigorous activities, walking, and running was 82%, 79%, 64%, 36% and 46%, respectively. In comparison, overall recognition accuracy for the Deep Learning Ensemble Network was 82.6%. For sedentary activities, light activities and games, moderate-to-vigorous activities, walking, and running recognition accuracy was 84%, 91%, 79%, 73% and 73%, respectively. Conclusions Ensemble machine learning approaches such as Deep Learning Ensemble Network can accurately predict activity type from accelerometer data in preschool children.
Resumo:
A systematic literature review and a comprehensive meta-analysis that combines the findings from existing studies, was conducted in this thesis to analyse the impact of traffic characteristics on crash occurrence. Sensitivity analyses were conducted to investigate the quality, publication bias and outlier bias of the various studies, and the time intervals used to measure traffic characteristics were considered. Based on this comprehensive and systematic review, and the results of the subsequent meta-analysis, major issues in study design, traffic and crash data, and model development and evaluation are discussed.
Resumo:
Automated remote ultrasound detectors allow large amounts of data on bat presence and activity to be collected. Processing of such data involves identifying bat species from their echolocation calls. Automated species identification has the potential to provide more consistent, predictable, and potentially higher levels of accuracy than identification by humans. In contrast, identification by humans permits flexibility and intelligence in identification, as well as the incorporation of features and patterns that may be difficult to quantify. We compared humans with artificial neural networks (ANNs) in their ability to classify short recordings of bat echolocation calls of variable signal to noise ratios; these sequences are typical of those obtained from remote automated recording systems that are often used in large-scale ecological studies. We presented 45 recordings (1–4 calls) produced by known species of bats to ANNs and to 26 human participants with 1 month to 23 years of experience in acoustic identification of bats. Humans correctly classified 86% of recordings to genus and 56% to species; ANNs correctly identified 92% and 62%, respectively. There was no significant difference between the performance of ANNs and that of humans, but ANNs performed better than about 75% of humans. There was little relationship between the experience of the human participants and their classification rate. However, humans with <1 year of experience performed worse than others. Currently, identification of bat echolocation calls by humans is suitable for ecological research, after careful consideration of biases. However, improvements to ANNs and the data that they are trained on may in future increase their performance to beyond those demonstrated by humans.
Resumo:
A number of Intelligent Transportation Systems (ITS) were used with an advanced driving simulator to assess its influence on driving behavior. Three types of ITS interventions namely, Video in-vehicle (ITS1), Audio in-vehicle (ITS2), and On-road flashing marker (ITS3) were tested. Then, the results from the driving simulator were used as inputs for a developed model using a traffic micro-simulation (Vissim 5.4) in order to assess the safety interventions. Using a driving simulator, 58 participants were required to drive through a number of active and passive crossings with and without an ITS device and in the presence or absence of an approaching train. The effect of driver behavior changing in terms of speed and compliance rate was greater at passive crossings than at active crossings. The difference in speed of drivers approaching ITS devices was very small which indicates that ITS helps drivers encounter the crossings in a safer way. Since the current traffic simulation was not able to replicate a dynamic speed change or a probability of stopping that varies based on different ITS safety devices, some modifications of the current traffic simulation were conducted. The results showed that exposure to ITS devices at active crossings did not influence the drivers’ behavior significantly according to the traffic performance indicators used, such as delay time, number of stops, speed, and stopped delay. On the other hand, the results of traffic simulation for passive crossings, where low traffic volumes and low train headway normally occur, showed that ITS devices improved overall traffic performance.