626 resultados para loss, PBEE, PEER method, earthquake engineering
Resumo:
China has experienced an extraordinary level of economic development since the 1990s, following excessive competition between different regions. This has resulted in many resource and environmental problems. Land resources, for example, are either abused or wasted in many regions. The strategy of development priority zoning (DPZ), proposed by the Chinese National 11th Five-Year Plan, provides an opportunity to solve these problems by coordinating regional development and protection. In line with the rational utilization of land, it is proposed that the DPZ strategy should be integrated with regional land use policy. As there has been little research to date on this issue, this paper introduces a system dynamic (SD) model for assessing land use change in China led by the DPZ strategy. Land use is characterized by the prioritization of land development, land utilization, land harness and land protection (D-U-H-P). By using the Delphi method, a corresponding suitable prioritization of D-U-H-P for the four types of DPZ, including optimized development zones (ODZ), key development zones (KDZ), restricted development zones (RDZ), and forbidden development zones (FDZ) are identified. Suichang County is used as a case study in which to conduct the simulation of land use change under the RDZ strategy. The findings enable a conceptualization to be made of DPZ-led land use change and the identification of further implications for land use planning generally. The SD model also provides a potential tool for local government to combine DPZ strategy at the national level with land use planning at the local level.
Resumo:
Public participate in the planning and design of major public infrastructure and construction (PIC) projects is crucial to their success, as the interests of different stakeholders can be systematically captured and built into the finalised scheme. However, public participation may not always yield a mutually acceptable solution, especially when the interests of stakeholders are diverse and conflicting. Confrontations and disputes can arise unless the concerns or needs of the community are carefully analysed and addressed. The aim of the paper is to propose a systematic method of analysing stakeholder concerns relating to PIC projects by examining the degree of consensus and/or conflict involved. The results of a questionnaire survey and a series of interviews with different entities are provided, which indicate the existence of a significant divergence of views among stakeholder groups and that conflicts arise when there is a mismatch between peoples’ perception concerning money and happiness on the one hand and development and damages on the other. Policy and decision-makers should strive to resolve at least the majority of conflicts that arise throughout the lifecycle of major PIC projects so as to maximise their chance of success.
Resumo:
Construction is undoubtedly the most dangerous industry in Hong Kong, being responsible for 76 percent of all fatal accidents in industry in the region – around twenty times more than any other industry. In this paper, it is argued that while this rate can be largely reduced by improved production practices in isolation from the project’s physical design, there is some scope for the design team to contribute to site safety. A new safety assessment method, the Virtual Safety Assessment System (VSAS), is described which offers assistance. This involves individual construction workers being presented with 3D virtual risky scenarios of their project and a range of possible actions for selection. The method provides an analysis of results, including an assessment of the correctness or otherwise of the user’s selections, contributing to an iterative process of retraining and testing until a satisfactory level of knowledge and skill is achieved.
Resumo:
Traffic generated semi and non volatile organic compounds (SVOCs and NVOCs) pose a serious threat to human and ecosystem health when washed off into receiving water bodies by stormwater. Climate change influenced rainfall characteristics makes the estimation of these pollutants in stormwater quite complex. The research study discussed in the paper developed a prediction framework for such pollutants under the dynamic influence of climate change on rainfall characteristics. It was established through principal component analysis (PCA) that the intensity and durations of low to moderate rain events induced by climate change mainly affect the wash-off of SVOCs and NVOCs from urban roads. The study outcomes were able to overcome the limitations of stringent laboratory preparation of calibration matrices by extracting uncorrelated underlying factors in the data matrices through systematic application of PCA and factor analysis (FA). Based on the initial findings from PCA and FA, the framework incorporated orthogonal rotatable central composite experimental design to set up calibration matrices and partial least square regression to identify significant variables in predicting the target SVOCs and NVOCs in four particulate fractions ranging from >300-1 μm and one dissolved fraction of <1 μm. For the particulate fractions range >300-1 μm, similar distributions of predicted and observed concentrations of the target compounds from minimum to 75th percentile were achieved. The inter-event coefficient of variations for particulate fractions of >300-1 μm were 5% to 25%. The limited solubility of the target compounds in stormwater restricted the predictive capacity of the proposed method for the dissolved fraction of <1 μm.
Resumo:
Airports represent the epitome of complex systems with multiple stakeholders, multiple jurisdictions and complex interactions between many actors. The large number of existing models that capture different aspects of the airport are a testament to this. However, these existing models do not consider in a systematic sense modelling requirements nor how stakeholders such as airport operators or airlines would make use of these models. This can detrimentally impact on the verification and validation of models and makes the development of extensible and reusable modelling tools difficult. This paper develops from the Concept of Operations (CONOPS) framework a methodology to help structure the review and development of modelling capabilities and usage scenarios. The method is applied to the review of existing airport terminal passenger models. It is found that existing models can be broadly categorised according to four usage scenarios: capacity planning, operational planning and design, security policy and planning, and airport performance review. The models, the performance metrics that they evaluate and their usage scenarios are discussed. It is found that capacity and operational planning models predominantly focus on performance metrics such as waiting time, service time and congestion whereas performance review models attempt to link those to passenger satisfaction outcomes. Security policy models on the other hand focus on probabilistic risk assessment. However, there is an emerging focus on the need to be able to capture trade-offs between multiple criteria such as security and processing time. Based on the CONOPS framework and literature findings, guidance is provided for the development of future airport terminal models.
Resumo:
A system is described for calculating volume from a sequence of multiplanar 2D ultrasound images. Ultrasound images are captured using a video digitising card (Hauppauge Win/TV card) installed in a personal computer, and regions of interest transformed into 3D space using position and orientation data obtained from an electromagnetic device (Polbemus, Fastrak). The accuracy of the system was assessed by scanning 10 water filled balloons (13-141 ml), 10 kidneys (147 200 ml) and 16 fetal livers (8 37 ml) in water using an Acuson 128XP/10 (5 MHz curvilinear probe). Volume was calculated using the ellipsoid, planimetry, tetrahedral and ray tracing methods and compared with the actual volume measured by weighing (balloons) and water displacement (kidneys and livers). The mean percentage error for the ray tracing method was 0.9 ± 2.4%, 2.7 ± 2.3%, 6.6 ± 5.4% for balloons, kidneys and livers, respectively. So far the system has been used clinically to scan fetal livers and lungs, neonate brain ventricles and adult prostate glands.
Resumo:
Monodisperse silica nanoparticles were synthesised by the well-known Stober protocol, then dispersed in acetonitrile (ACN) and subsequently added to a bisacetonitrile gold(I) coordination complex ([Au(MeCN)2]?) in ACN. The silica hydroxyl groups were deprotonated in the presence of ACN, generating a formal negative charge on the siloxy groups. This allowed the [Au(MeCN)2]? complex to undergo ligand exchange with the silica nanoparticles and form a surface coordination complex with reduction to metallic gold (Au0) proceeding by an inner sphere mechanism. The residual [Au(MeCN)2]? complex was allowed to react with water, disproportionating into Au0 and Au(III), respectively, with the Au0 adding to the reduced gold already bound on the silica surface. The so-formed metallic gold seed surface was found to be suitable for the conventional reduction of Au(III) to Au0 by ascorbic acid (ASC). This process generated a thin and uniform gold coating on the silica nanoparticles. The silica NPs batches synthesised were in a size range from 45 to 460 nm. Of these silica NP batches, the size range from 400 to 480 nm were used for the gold-coating experiments.
Resumo:
This study reports on the gas sensing characteristics of Fe-doped (10 at.%) tungsten oxide thin films of various thicknesses (100–500 nm) prepared by electron beam evaporation. The performance of these films in sensing four gases (H2, NH3, NO2 and N2O) in the concentration range 2–10,000 ppm at operating temperatures of 150–280 °C has been investigated. The results are compared with the sensing performance of a pure WO3 film of thickness 300 nm produced by the same method. Doping of the tungsten oxide film with 10 at.% Fe significantly increases the base conductance of the pure film but decreases the gas sensing response. The maximum response measured in this experiment, represented by the relative change in resistance when exposed to a gas, was ΔR/R = 375. This was the response amplitude measured in the presence of 5 ppm NO2 at an operating temperature of 250 °C using a 400 nm thick WO3:Fe film. This value is slightly lower than the corresponding result obtained using the pure WO3 film (ΔR/R = 450). However it was noted that the WO3:Fe sensor is highly selective to NO2, exhibiting a much higher response to NO2 compared to the other gases. The high performance of the sensors to NO2 was attributed to the small grain size and high porosity of the films, which was obtained through e-beam evaporation and post-deposition heat treatment of the films at 300 °C for 1 h in air.
Resumo:
The aim of this study was to prepare and characterise composites of Soluble potato starch or hydroxypropylated maize starch with milled sugar cane fibre (i.e., bagasse). Prior to the preparation of the starch-fibre composites, the ‘cast’ and the ‘hot-pressed’ methods were investigated for the preparation of starch films in order to select the preferred preparation method. The physicochemical and mechanical properties of films conditioned at different relative humidities (RHs) were determined through moisture uptake, crystallinity, glass transition temperature (Tg), thermal properties, molecular structure and tensile tests. Hot-pressed starch films have ~5.5% less moisture, twice the crystallinity (~59%), higher Tg and Young’s modulus than cast starch films. The VH-type starch polymorph was observed to be present in the hot-pressed films. The addition of bagasse fibre to both starch types, prepared by hot-pressing, reduced the moisture uptake by up to 30% (cf., cast film) at 58% RH. The addition of 5 wt% fibre increased the tensile strength and Young’s modulus by 16% and 24% respectively. It significantly decreased the tensile strain by ~53%. Fourier Transform infrared (FT-IR) spectroscopy revealed differences in hydrogen bonding capacity between the films with fibre and those without fibre. The results have been explained on the basis of the intrinsic properties of starch and bagasse fibres.
Resumo:
A practical method for the design of dual-band decoupling and matching networks (DMN) for two closely spaced antennas using discrete components is presented. The DMN reduces the port-to-port coupling and enhances the diversity of the antennas. By applying the DMN, the radiation efficiency can also be improved when one port is fed and the other port is match terminated. The proposed DMN works at two frequencies simultaneously without the need for any switch. As a proof of concept, a dual-band DMN for a pair of monopoles spaced 0.05λ apart is designed. The measured return loss and port isolation exceed 10 dB from 1.71 GHz to 1.76 GHz and from 2.27 GHz to 2.32 GHz.
Resumo:
In this study the interplay effects for Enhanced Dynamic Wedge (EDW) treatments are experimentally investigated. Single and multiple field EDW plans for different wedge angles were delivered to a phantom and detector on a moving platform, with various periods, amplitudes for parallel and perpendicular motions. A four field 4D CT planned lung EDW treatment was delivered to a dummy tumor over four fractions. For the single field parallel case the amplitude and the period of motion both affect the interplay resulting in the appearance of a step function and penumbral cut off with the discrepancy worst where collimator-tumor speed is similar. For perpendicular motion the amplitude of tumor motion is the only dominant factor. For large wedge angle the dose discrepancy is more pronounced compared to the small wedge angle for the same field size and amplitude-period values. For a small field size i.e. 5 × 5 cm2 the loss of wedged distribution was observed for both 60º and 15º wedge angles for of parallel and perpendicular motions. Film results from 4D CT planned delivery displayed a mix of over and under dosages over 4 fractions, with the gamma pass rate of 40% for the averaged film image at 3%/1 mm DTA (Distance to Agreement). Amplitude and period of the tumor motion both affect the interplay for single and multi-field EDW treatments and for a limited (4 or 5) fraction delivery there is a possibility of non-averaging of the EDW interplay.
Resumo:
This paper investigates relationship between traffic conditions and the crash occurrence likelihood (COL) using the I-880 data. To remedy the data limitations and the methodological shortcomings suffered by previous studies, a multiresolution data processing method is proposed and implemented, upon which binary logistic models were developed. The major findings of this paper are: 1) traffic conditions have significant impacts on COL at the study site; Specifically, COL in a congested (transitioning) traffic flow is about 6 (1.6) times of that in a free flow condition; 2)Speed variance alone is not sufficient to capture traffic dynamics’ impact on COL; a traffic chaos indicator that integrates speed, speed variance, and flow is proposed and shows a promising performance; 3) Models based on aggregated data shall be interpreted with caution. Generally, conclusions obtained from such models shall not be generalized to individual vehicles (drivers) without further evidences using high-resolution data and it is dubious to either claim or disclaim speed kills based on aggregated data.
Resumo:
In this paper we extend the ideas of Brugnano, Iavernaro and Trigiante in their development of HBVM($s,r$) methods to construct symplectic Runge-Kutta methods for all values of $s$ and $r$ with $s\geq r$. However, these methods do not see the dramatic performance improvement that HBVMs can attain. Nevertheless, in the case of additive stochastic Hamiltonian problems an extension of these ideas, which requires the simulation of an independent Wiener process at each stage of a Runge-Kutta method, leads to methods that have very favourable properties. These ideas are illustrated by some simple numerical tests for the modified midpoint rule.
Resumo:
Bone’s capacity to repair following trauma is both unique and astounding. However, fractures sometimes fail to heal. Hence, the goal of fracture treatment is the restoration of bone’s structure, composition and function. Fracture fixation devices should provide a favourable mechanical and biological environment for healing to occur. The use of internal fixation is increasing as these devices may be applied with less invasive techniques. Recent studies suggest however that, internal fixation devices may be overly stiff and suppresses callus formation. The degree of mechanical stability influences the healing outcome. This is determined by the stiffness of the fixation device and the degree of limb loading. This project aims to characterise the fixation stability of an internal plate fixation device and the influence of modifications to its configuration on implant stability. As there are no standardised methods for the determination of fixation stiffness, the first part of this project aims to compares different methodologies and determines the most appropriate method to characterise the stiffness of internal plate fixators. The stiffness of a fixation device also influences the physiological loads experienced by the healing bone. Since bone adapts to this applied load by undergoing changes through a remodelling process, undesirable changes could occur during the period of treatment with an implant. The second part of this project aims to develop a methodology to quantify remodelling changes. This quantification is expected to aid our understanding of the changes in pattern due to implant related remodelling and on the factors driving the remodelling process. Knowledge gained in this project is useful to understand how the configuration of internal fixation devices can promote timely healing and prevent undesirable bone loss.
Resumo:
There are several popular soil moisture measurement methods today such as time domain reflectometry, electromagnetic (EM) wave, electrical and acoustic methods. Significant studies have been dedicated in developing method of measurements using those concepts, especially to achieve the characteristics of noninvasiveness. EM wave method provides an advantage because it is non-invasive to the soil and does not need to utilise probes to penetrate or bury in the soil. But some EM methods are also too complex, expensive, and not portable for the application of Wireless Sensor Networks; for example satellites or UAV (Unmanned Aerial Vehicle) based sensors. This research proposes a method in detecting changes in soil moisture using soil-reflected electromagnetic (SREM) wave from Wireless Sensor Networks (WSNs). Studies have shown that different levels of soil moisture will affects soil’s dielectric properties, such as relative permittivity and conductivity, and in turns change its reflection coefficients. The SREM wave method uses a transmitter adjacent to a WSNs node with purpose exclusively to transmit wireless signals that will be reflected by the soil. The strength from the reflected signal that is determined by the soil’s reflection coefficients is used to differentiate the level of soil moisture. The novel nature of this method comes from using WSNs communication signals to perform soil moisture estimation without the need of external sensors or invasive equipment. This innovative method is non-invasive, low cost and simple to set up. There are three locations at Brisbane, Australia chosen as the experiment’s location. The soil type in these locations contains 10–20% clay according to the Australian Soil Resource Information System. Six approximate levels of soil moisture (8, 10, 13, 15, 18 and 20%) are measured at each location; with each measurement consisting of 200 data. In total 3600 measurements are completed in this research, which is sufficient to achieve the research objective, assessing and proving the concept of SREM wave method. These results are compared with reference data from similar soil type to prove the concept. A fourth degree polynomial analysis is used to generate an equation to estimate soil moisture from received signal strength as recorded by using the SREM wave method.