576 resultados para locations
Resumo:
With increasing rate of shipping traffic, the risk of collisions in busy and congested port waters is likely to rise. However, due to low collision frequencies in port waters, it is difficult to analyze such risk in a sound statistical manner. A convenient approach of investigating navigational collision risk is the application of the traffic conflict techniques, which have potential to overcome the difficulty of obtaining statistical soundness. This study aims at examining port water conflicts in order to understand the characteristics of collision risk with regard to vessels involved, conflict locations, traffic and kinematic conditions. A hierarchical binomial logit model, which considers the potential correlations between observation-units, i.e., vessels, involved in the same conflicts, is employed to evaluate the association of explanatory variables with conflict severity levels. Results show higher likelihood of serious conflicts for vessels of small gross tonnage or small overall length. The probability of serious conflict also increases at locations where vessels have more varied headings, such as traffic intersections and anchorages; becoming more critical at night time. Findings from this research should assist both navigators operating in port waters as well as port authorities overseeing navigational management.
Resumo:
The redclaw crayfish Cherax quadricarinatus (von Martens) accounts for the entire commercial production of freshwater crayfish in Australia. Two forms have been recognized, an 'Eastern' form in northern Queensland and a 'Western' form in the Northern Territory and far northern Western Australia. To date, only the Eastern form has been exported overseas for culture (including to China). The genetic structure of three Chinese redclaw crayfish culture lines from three different geographical locations in China (Xiamen in Fujian Province, Guangzhou in Guangdong Province and Chongming in Shanghai) were investigated for their levels and patterns of genetic diversity using microsatellite markers. Twenty-eight SSR markers were isolated and used to analyse genetic diversity levels in three redclaw crayfish culture lines in China. This study set out to improve the current understanding of the molecular genetic characteristics of imported strains of redclaw crayfish reared in China. Microsatellite analysis revealed moderate allelic and high gene diversity in all three culture lines. Polymorphism information content estimates for polymorphic loci varied between 0.1168 and 0.8040, while pairwise F ST values among culture lines were moderate (0.0020-0.1244). The highest estimate of divergence was evident between the Xiamen and Guangzhou populations.
Resumo:
Appearance-based localization can provide loop closure detection at vast scales regardless of accumulated metric error. However, the computation time and memory requirements of current appearance-based methods scale not only with the size of the environment but also with the operation time of the platform. Additionally, repeated visits to locations will develop multiple competing representations, which will reduce recall performance over time. These properties impose severe restrictions on long-term autonomy for mobile robots, as loop closure performance will inevitably degrade with increased operation time. In this paper we present a graphical extension to CAT-SLAM, a particle filter-based algorithm for appearance-based localization and mapping, to provide constant computation and memory requirements over time and minimal degradation of recall performance during repeated visits to locations. We demonstrate loop closure detection in a large urban environment with capped computation time and memory requirements and performance exceeding previous appearance-based methods by a factor of 2. We discuss the limitations of the algorithm with respect to environment size, appearance change over time and applications in topological planning and navigation for long-term robot operation.
Resumo:
Despite its role in determining both indoor and outdoor human exposure to anthropogenic particles, there is limited information describing vertical profiles of particle concentrations in urban environments, especially for ultrafine particles. Furthermore, the results of the few studies performed have been inconsistent. As such, this study aimed to assess the influence of vehicle emissions and nucleation formation on particle characteristics (particle number size distribution-PNSD and PM 2.5 concentration) at different heights around three urban office buildings located next to busy roads in Brisbane, Australia, and place these results in the broader context of the existing literature. Two sets of instruments were used to simultaneously measure PNSD, particle number (PN) and PM 2.5 concentrations, respectively, for up to three weeks at each building. The results showed that both PNSD and PM 2.5 concentration around building envelopes were influenced by vehicle emissions and new particle formation, and that they exhibited variability across the three different office buildings. During nucleation events, PN concentration in size range of <30 nm and total PN concentration increased (7-65% and 5-46%, respectively), while PM 2.5 concentration decreased (36-52%) with height. This study has shown an under acknowledged role for nucleation in producing particles that can affect large numbers of people, due to the high density and occupancy of urban office buildings and the fact that the vast majority of people's time is spent indoors. These findings highlight important new information related to the previously overlooked role of particle formation in the urban atmosphere and its potential effects on selection of air intake locations and appropriate filter types when designing or upgrading mechanical ventilation systems in urban office buildings. The results also serve to better define particle behaviour and variability around building envelopes, which has implications for studies of both human exposure and particle dynamics. © 2012 Author(s).
Resumo:
The Kyoto Protocol recognises trees as a sink of carbon and a valid means to offset greenhouse gas emissions and meet internationally agreed emissions targets. This study details biological carbon sequestration rates for common plantation species Araucaria cunninghamii (hoop pine), Eucalyptus cloeziana, Eucalyptus argophloia, Pinus elliottii and Pinus caribaea var hondurensis and individual land areas required in north-eastern Australia to offset greenhouse gas emissions of 1000tCO 2e. The 3PG simulation model was used to predict above and below-ground estimates of biomass carbon for a range of soil productivity conditions for six representative locations in agricultural regions of north-eastern Australia. The total area required to offset 1000tCO 2e ranges from 1ha of E. cloeziana under high productivity conditions in coastal North Queensland to 45ha of hoop pine in low productivity conditions of inland Central Queensland. These areas must remain planted for a minimum of 30years to meet the offset of 1000tCO 2e.
Resumo:
Appearance-based localization is increasingly used for loop closure detection in metric SLAM systems. Since it relies only upon the appearance-based similarity between images from two locations, it can perform loop closure regardless of accumulated metric error. However, the computation time and memory requirements of current appearance-based methods scale linearly not only with the size of the environment but also with the operation time of the platform. These properties impose severe restrictions on longterm autonomy for mobile robots, as loop closure performance will inevitably degrade with increased operation time. We present a set of improvements to the appearance-based SLAM algorithm CAT-SLAM to constrain computation scaling and memory usage with minimal degradation in performance over time. The appearance-based comparison stage is accelerated by exploiting properties of the particle observation update, and nodes in the continuous trajectory map are removed according to minimal information loss criteria. We demonstrate constant time and space loop closure detection in a large urban environment with recall performance exceeding FAB-MAP by a factor of 3 at 100% precision, and investigate the minimum computational and memory requirements for maintaining mapping performance.
Resumo:
This paper describes a novel method for determining the extrinsic calibration parameters between 2D and 3D LIDAR sensors with respect to a vehicle base frame. To recover the calibration parameters we attempt to optimize the quality of a 3D point cloud produced by the vehicle as it traverses an unknown, unmodified environment. The point cloud quality metric is derived from Rényi Quadratic Entropy and quantifies the compactness of the point distribution using only a single tuning parameter. We also present a fast approximate method to reduce the computational requirements of the entropy evaluation, allowing unsupervised calibration in vast environments with millions of points. The algorithm is analyzed using real world data gathered in many locations, showing robust calibration performance and substantial speed improvements from the approximations.
Resumo:
Flexibility is a key driver of any successful design, specifically in highly unpredictable environment such as airport terminal. Ever growing aviation industry requires airport terminals to be planned and constructed in such a way that will allow flexibility for future design, alteration and redevelopment. The concept of flexibility in terminal design is a relatively new initiative, where existing rules or guidelines are not adequate to assist designers. A shift towards flexible design concept would allow terminal buildings to be designed to accommodate future changes and to make passengers’ journey as simple, timely and hassle free as possible. Currently available research indicates that a theoretical framework on flexible design approach for airport terminals would facilitate the future design process. The generic principles of flexibility are investigated in the current research to incorporate flexible design approaches within the process of an airport terminal design. A conceptual framework is proposed herein, which is expected to ascertain flexibility to current passenger terminal facilities within their corresponding locations as well as in future design and expansion.
Resumo:
This paper argues that the logic of neoliberal choice policy is typically blind to considerations of space and place, but inevitably impacts on rural and remote locations in the way that middle class professionals view the opportunities available in their local educational markets. The paper considers the value of middle class professionals’ educational capitals in regional communities and their problematic distribution, given that class fraction’s particular investment in choice strategies to ensure their children’s future. It then profiles the educational market in six communities along a transect between a major regional centre and a remote ‘outback’ town, using publicly available data from the Australian government’s ‘My School’ website. Comparison of the local markets shows how educational outcomes are distributed across the local markets and how dimensions of ‘choice’ thin out over the transect. Interview data offers insights into how professional families in these localities engage selectively with these local educational markets, or plan to transcend them. The discussion reflects on the growing importance of educational choices as a marker of place in the competition between localities to attract and retain professionals to staff vital human services in their communities.
Resumo:
Objective To identify the spatial and temporal clusters of Barmah Forest virus (BFV) disease in Queensland in Australia, using geographical information systems (GIS) and spatial scan statistic (SaTScan). Methods We obtained BFV disease cases, population and statistical local areas boundary data from Queensland Health and Australian Bureau of Statistics respectively during 1992-2008 for Queensland. A retrospective Poisson-based analysis using SaTScan software and method was conducted in order to identify both purely spatial and space-time BFV disease high-rate clusters. A spatial cluster size of a proportion of the population and a 200km circle radius and varying time windows from 1 month to 12 months were chosen (for the space-time analysis). Results The spatial scan statistic detected a most likely significant purely spatial cluster (including 23 SLAs) and a most likely significant space-time cluster (including 24 SLAs) in approximately the same location. Significant secondary clusters were also identified from both the analyses in several locations. Conclusions This study provides evidence of the existence of statistically significant BFV disease clusters in Queensland, Australia. The study also demonstrated the relevance and applicability of SaTScan in analysing on-going surveillance data to identify clusters to facilitate the development of effective BFV disease prevention and control strategies in Queensland, Australia.
Resumo:
The chief challenge facing persistent robotic navigation using vision sensors is the recognition of previously visited locations under different lighting and illumination conditions. The majority of successful approaches to outdoor robot navigation use active sensors such as LIDAR, but the associated weight and power draw of these systems makes them unsuitable for widespread deployment on mobile robots. In this paper we investigate methods to combine representations for visible and long-wave infrared (LWIR) thermal images with time information to combat the time-of-day-based limitations of each sensing modality. We calculate appearance-based match likelihoods using the state-of-the-art FAB-MAP [1] algorithm to analyse loop closure detection reliability across different times of day. We present preliminary results on a dataset of 10 successive traverses of a combined urban-parkland environment, recorded in 2-hour intervals from before dawn to after dusk. Improved location recognition throughout an entire day is demonstrated using the combined system compared with methods which use visible or thermal sensing alone.
Resumo:
Encouraging quality teaching staff to apply for and accept teaching placements in rural and remote locations is an ongoing concern internationally. The value of different support mechanisms provided for pre-service teachers attending a rural and remote practicum[1] are investigated through theories of place and the school-community nexus. Qualitative data regarding the experiences of the pre-service teachers were collected through interviews and case study notes. This project adds to our understanding of practicum in rural areas by employing a conceptual understanding of place to propose how the experiences of a four-week practicum may contribute to urban pre-service teachers’ conceptions of work and life in a rural community
Resumo:
This paper demonstrates the affordances of the work diary as a data collection tool for both pilot studies and qualitative research of social interactions. Observation is the cornerstone of many qualitative, ethnographic research projects (Creswell, 2008). However, determining through observation, the activities of busy school teams could be likened to joining dots of a child’s drawing activity to reveal a complex picture of interactions. Teachers, leaders and support personnel are in different locations within a school, performing diverse tasks for a variety of outcomes, which hopefully achieve a common goal. As a researcher, the quest to observe these busy teams and their interactions with each other was daunting and perhaps unrealistic. The decision to use a diary as part of a wider research project was to overcome the physical impossibility of simultaneously observing multiple team members. One reported advantage of the use of the diary in research was its suitability as a substitute for lengthy researcher observation, because multiple data sets could be collected at once (Lewis et al, 2005; Marelli, 2007).
Resumo:
The transmission of bacteria is more likely to occur from wet skin than from dry skin; therefore, the proper drying of hands after washing should be an integral part of the hand hygiene process in health care. This article systematically reviews the research on the hygienic efficacy of different hand-drying methods. A literature search was conducted in April 2011 using the electronic databases PubMed, Scopus, and Web of Science. Search terms used were hand dryer and hand drying. The search was limited to articles published in English from January 1970 through March 2011. Twelve studies were included in the review. Hand-drying effectiveness includes the speed of drying, degree of dryness, effective removal of bacteria, and prevention of cross-contamination. This review found little agreement regarding the relative effectiveness of electric air dryers. However, most studies suggest that paper towels can dry hands efficiently, remove bacteria effectively, and cause less contamination of the washroom environment. From a hygiene viewpoint, paper towels are superior to electric air dryers. Paper towels should be recommended in locations where hygiene is paramount, such as hospitals and clinics.
Resumo:
Columns and walls in buildings are subjected to a number of load increments during the construction and service stages. The combination of these load increments and poor quality construction can cause defects in these structural components. In addition, defects can also occur due to accidental or deliberate actions by users of the building during construction and service stages. Such defects should be detected early so that remedial measures can be taken to improve life time serviceability and performance of the building. This paper uses micro and macro model upgrading methods during construction and service stages of a building based on the mass and stiffness changes to develop a comprehensive procedure for locating and detecting defects in columns and walls of buildings. Capabilities of the procedure are illustrated through examples.