326 resultados para incorporate probabilistic techniques
Resumo:
Since the introduction of the National Human Papillomavirus Vaccine Program (NHPVP) in 2007, few studies have assessed women's knowledge, beliefs and attitudes towards cervical screening and human papillomavirus (HPV) vaccination in Australia. It is imperative to ascertain this, as substantial changes are anticipated to the National Cervical Screening Program (NCSP) through a process called 'the Renewal', to ensure any changes that are introduced will be acceptable and well understood by women. The objectives of this study were to describe Queensland women's current knowledge of cervical cancer/screening and HPV, their beliefs and attitudes towards Pap smears and the HPV vaccine and seek their advice on effective methods for communicating changes to the NCSP in their communities. This research was a descriptive-exploratory study that incorporated a combination of qualitative and quantitative methods within the context of the Health Belief Model (HBM). A computer-assisted telephone interview (CATI) survey of 1002 Queensland women was conducted in Phase 1 of the study. During Phase 2 of the study, 23 focus groups were conducted throughout Queensland to gather in-depth information about women's knowledge, awareness and acceptance about cervical cancer prevention strategies. This study found high levels of awareness of HPV (over 60%) and the HPV vaccine (over 86%) amongst Queensland women. However, it also identified considerable uncertainty amongst participants about perceived susceptibility to cervical cancer, especially, the link between cervical cancer, HPV and sexual activity. Women also had limited understanding of the benefit of the Pap smear as a preventative strategy, with many women thinking the main purpose of the Pap smear was for the early detection of cancer. Despite high awareness of HPV, women participating in this study also had significant knowledge deficits about their susceptibility to HPV and the severity of HPV infection. Queensland women had high levels of awareness of the HPV vaccine, which was most commonly via the media. High acceptance of the HPV vaccine was found amongst participants although awareness of the full benefits of vaccination was not evident with little acknowledgement that the quadrivalent vaccine used in the NHPVP would also prevent genital warts. Extensive barriers to having Pap smears, including physical and psychological discomfort, were identified and the most common barriers to vaccination were concerns about side effects and a lack of information upon which to make a decision about consent. Women described enablers for screening participation, such as reminder systems and practitioner characteristics, and expressed positive views towards self collected testing as an enabler, particularly for women who did not attend screening. As this study was conducted with Queensland women it may therefore not be representative of women from other parts of Australia and as participants were more likely to report they were regular screeners than Queensland women overall, these results may not be representative of women least likely to participate in cervical screening. The use of self-reported cervical screening history may also have led to over-reporting of screening status and previous abnormalities by participants. This study reveals significant gaps in Queensland women's knowledge that require effective communication strategies to address. Recommendations from this study highlight the need for increased community education to raise awareness about primary and secondary cervical cancer prevention strategies, training of cervical screening providers in sensitive examination techniques, a reduction in costs associated with screening, the exploration of alternative service models and communication plans that incorporate methods women trust and recommend for disseminating information about changes to the NCSP. This study is the first large study to explore women's perceptions of the Pap smear and barriers to screening, their knowledge about HPV and their attitudes towards the HPV vaccine in Queensland, since the introduction of the NHPVP. It highlights considerable uncertainty about many aspects of cervical cancer and primary and secondary prevention strategies available in Australia and identified many barriers to cervical screening and concerns about HPV vaccination. These knowledge gaps and barriers need to be taken into account and addressed within the context of anticipated changes to the NCSP to ensure benefits are maximised for women in future primary and secondary cervical cancer prevention strategies in the Australian context.
Resumo:
It is well-known that the use of off-site manufacture (OSM) techniques can assist in timely completion of a construction project though the utilisation of such techniques may have other disadvantages. Currently, OSM uptake within the Australian construction industry is limited. To successfully incorporate OSM practices within a construction project, it is crucial to understand the impact of OSM adoption on the processes used during a construction project. This paper presents how a systematic process-oriented approach may be able to support OSM utilisation within a construction project. Process modelling, analysis and automation techniques which are well-known within the Business Process Management (BPM) discipline have been applied to develop a collection of construction process models that represent the end-to-end generic construction value chain. The construction value chain enables researchers to identify key activities, resources, data, and stakeholders involved in construction processes in each defined construction phase. The collection of construction process models is then used as a basis for identification of potential OSM intervention points in collaboration with domain experts from the Australian construction industry. This ensures that the resulting changes reflect the needs of various stakeholders within the construction industry and have relevance in practice. Based on the input from the domain experts, these process models are further refined and operational requirements are taken into account to develop a prototype process automation (workflow) system that can support and coordinate OSM-related process activities. The resulting workflow system also has the potential to integrate with other IT solutions used within the construction industry (e.g., BIM, Acconex). As such, the paper illustrates the role that process-oriented thinking can play in assisting OSM adoption within the industry.
Resumo:
Using cooperative learning in classrooms promotes academic achievement, communication skills, problem-solving, social skills and student motivation. Yet it is reported that cooperative learning as a Western educational concept may be ineffective in Asian cultural contexts. The study aims to investigate the utilisation of scaffolding techniques for cooperative learning in Thailand primary mathematics classes. A teacher training program was designed to foster Thai primary school teachers’ cooperative learning implementation. Two teachers participated in this experimental program for one and a half weeks and then implemented cooperative learning strategies in their mathematics classes for six weeks. The data collected from teacher interviews and classroom observations indicates that the difficulty or failure of implementing cooperative learning in Thailand education may not be directly derived from cultural differences. Instead, it does indicate that Thai culture can be constructively merged with cooperative learning through a teacher training program and practices of scaffolding techniques.
Resumo:
Airport efficiency is important because it has a direct impact on customer safety and satisfaction and therefore the financial performance and sustainability of airports, airlines, and affiliated service providers. This is especially so in a world characterized by an increasing volume of both domestic and international air travel, price and other forms of competition between rival airports, airport hubs and airlines, and rapid and sometimes unexpected changes in airline routes and carriers. It also reflects expansion in the number of airports handling regional, national, and international traffic and the growth of complementary airport facilities including industrial, commercial, and retail premises. This has fostered a steadily increasing volume of research aimed at modeling and providing best-practice measures and estimates of airport efficiency using mathematical and econometric frontiers. The purpose of this chapter is to review these various methods as they apply to airports throughout the world. Apart from discussing the strengths and weaknesses of the different approaches and their key findings, the paper also examines the steps faced by researchers as they move through the modeling process in defining airport inputs and outputs and the purported efficiency drivers. Accordingly, the chapter provides guidance to those conducting empirical research on airport efficiency and serves as an aid for aviation regulators and airport operators among others interpreting airport efficiency research outcomes.
Resumo:
Whole-image descriptors such as GIST have been used successfully for persistent place recognition when combined with temporal filtering or sequential filtering techniques. However, whole-image descriptor localization systems often apply a heuristic rather than a probabilistic approach to place recognition, requiring substantial environmental-specific tuning prior to deployment. In this paper we present a novel online solution that uses statistical approaches to calculate place recognition likelihoods for whole-image descriptors, without requiring either environmental tuning or pre-training. Using a real world benchmark dataset, we show that this method creates distributions appropriate to a specific environment in an online manner. Our method performs comparably to FAB-MAP in raw place recognition performance, and integrates into a state of the art probabilistic mapping system to provide superior performance to whole-image methods that are not based on true probability distributions. The method provides a principled means for combining the powerful change-invariant properties of whole-image descriptors with probabilistic back-end mapping systems without the need for prior training or system tuning.
Resumo:
This paper presents a comparative study on the response of a buried tunnel to surface blast using the arbitrary Lagrangian-Eulerian (ALE) and smooth particle hydrodynamics (SPH) techniques. Since explosive tests with real physical models are extremely risky and expensive, the results of a centrifuge test were used to validate the numerical techniques. The numerical study shows that the ALE predictions were faster and closer to the experimental results than those from the SPH simulations which over predicted the strains. The findings of this research demonstrate the superiority of the ALE modelling techniques for the present study. They also provide a comprehensive understanding of the preferred ALE modelling techniques which can be used to investigate the surface blast response of underground tunnels.
Resumo:
This paper analyses the probabilistic linear discriminant analysis (PLDA) speaker verification approach with limited development data. This paper investigates the use of the median as the central tendency of a speaker’s i-vector representation, and the effectiveness of weighted discriminative techniques on the performance of state-of-the-art length-normalised Gaussian PLDA (GPLDA) speaker verification systems. The analysis within shows that the median (using a median fisher discriminator (MFD)) provides a better representation of a speaker when the number of representative i-vectors available during development is reduced, and that further, usage of the pair-wise weighting approach in weighted LDA and weighted MFD provides further improvement in limited development conditions. Best performance is obtained using a weighted MFD approach, which shows over 10% improvement in EER over the baseline GPLDA system on mismatched and interview-interview conditions.
Resumo:
Pile foundations transfer loads from superstructures to stronger sub soil. Their strength and stability can hence affect structural safety. This paper treats the response of reinforced concrete pile in saturated sand to a buried explosion. Fully coupled computer simulation techniques are used together with five different material models. Influence of reinforcement on pile response is investigated and important safety parameters of horizontal deformations and tensile stresses in the pile are evaluated. Results indicate that adequate longitudinal reinforcement and proper detailing of transverse reinforcement can reduce pile damage. Present findings can serve as a benchmark reference for future analysis and design.
Resumo:
This paper proposes an approach to achieve resilient navigation for indoor mobile robots. Resilient navigation seeks to mitigate the impact of control, localisation, or map errors on the safety of the platform while enforcing the robot’s ability to achieve its goal. We show that resilience to unpredictable errors can be achieved by combining the benefits of independent and complementary algorithmic approaches to navigation, or modalities, each tuned to a particular type of environment or situation. In this paper, the modalities comprise a path planning method and a reactive motion strategy. While the robot navigates, a Hidden Markov Model continually estimates the most appropriate modality based on two types of information: context (information known a priori) and monitoring (evaluating unpredictable aspects of the current situation). The robot then uses the recommended modality, switching between one and another dynamically. Experimental validation with a SegwayRMP- based platform in an office environment shows that our approach enables failure mitigation while maintaining the safety of the platform. The robot is shown to reach its goal in the presence of: 1) unpredicted control errors, 2) unexpected map errors and 3) a large injected localisation fault.
Resumo:
Considering the wide spectrum of situations that it may encounter, a robot navigating autonomously in outdoor environments needs to be endowed with several operating modes, for robustness and efficiency reasons. Indeed, the terrain it has to traverse may be composed of flat or rough areas, low cohesive soils such as sand dunes, concrete road etc. . .Traversing these various kinds of environment calls for different navigation and/or locomotion functionalities, especially if the robot is endowed with different locomotion abilities, such as the robots WorkPartner, Hylos [4], Nomad or the Marsokhod rovers. Numerous rover navigation techniques have been proposed, each of them being suited to a particular environment context (e.g. path following, obstacle avoidance in more or less cluttered environments, rough terrain traverses...). However, seldom contributions in the literature tackle the problem of selecting autonomously the most suited mode [3]. Most of the existing work is indeed devoted to the passive analysis of a single navigation mode, as in [2]. Fault detection is of course essential: one can imagine that a proper monitoring of the Mars Exploration Rover Opportunity could have avoided the rover to be stuck during several weeks in a dune, by detecting non-nominal behavior of some parameters. But the ability to recover the anticipated problem by switching to a better suited navigation mode would bring higher autonomy abilities, and therefore a better overall efficiency. We propose here a probabilistic framework to achieve this, which fuses environment related and robot related information in order to actively control the rover operations.
Resumo:
This paper presents an approach to autonomously monitor the behavior of a robot endowed with several navigation and locomotion modes, adapted to the terrain to traverse. The mode selection process is done in two steps: the best suited mode is firstly selected on the basis of initial information or a qualitative map built on-line by the robot. Then, the motions of the robot are monitored by various processes that update mode transition probabilities in a Markov system. The paper focuses on this latter selection process: the overall approach is depicted, and preliminary experimental results are presented
Resumo:
Whole image descriptors have recently been shown to be remarkably robust to perceptual change especially compared to local features. However, whole-image-based localization systems typically rely on heuristic methods for determining appropriate matching thresholds in a particular environment. These environment-specific tuning requirements and the lack of a meaningful interpretation of these arbitrary thresholds limits the general applicability of these systems. In this paper we present a Bayesian model of probability for whole-image descriptors that can be seamlessly integrated into localization systems designed for probabilistic visual input. We demonstrate this method using CAT-Graph, an appearance-based visual localization system originally designed for a FAB-MAP-style probabilistic input. We show that using whole-image descriptors as visual input extends CAT-Graph’s functionality to environments that experience a greater amount of perceptual change. We also present a method of estimating whole-image probability models in an online manner, removing the need for a prior training phase. We show that this online, automated training method can perform comparably to pre-trained, manually tuned local descriptor methods.
Resumo:
Visual localization in outdoor environments is often hampered by the natural variation in appearance caused by such things as weather phenomena, diurnal fluctuations in lighting, and seasonal changes. Such changes are global across an environment and, in the case of global light changes and seasonal variation, the change in appearance occurs in a regular, cyclic manner. Visual localization could be greatly improved if it were possible to predict the appearance of a particular location at a particular time, based on the appearance of the location in the past and knowledge of the nature of appearance change over time. In this paper, we investigate whether global appearance changes in an environment can be learned sufficiently to improve visual localization performance. We use time of day as a test case, and generate transformations between morning and afternoon using sample images from a training set. We demonstrate the learned transformation can be generalized from training data and show the resulting visual localization on a test set is improved relative to raw image comparison. The improvement in localization remains when the area is revisited several weeks later.
Resumo:
Polarisation diversity is a technique to improve the quality of mobile communications, but its reliability is suboptimal because it depends on the mobile channel and the antenna orientations at both ends of the mobile link. A method to optimise the reliability is established by minimising the dependency on antenna orientations. While the mobile base station can have fixed antenna orientation, the mobile terminal is typically a handheld device with random orientations. This means orientation invariance needs to be established at the receiver in the downlink, and at the transmitter in the uplink. This research presents separate solutions for both cases, and is based on the transmission of an elliptically polarised signal synthesised from the channel statistics. Complete receiver orientation invariance is achieved in the downlink. Effects of the transmitter orientation are minimised in the uplink.
Resumo:
Previous studies have shown that the human lens contains glycerophospholipids with ether linkages. These lipids differ from conventional glycerophospholipids in that the sn-1 substituent is attached to the glycerol backbone via an 1-O-alkyl or an 1-O-alk-1'-enyl ether rather than an ester bond. The present investigation employed a combination of collision-induced dissociation (CID) and ozone-induced dissociation (OzID) to unambiguously distinguish such 1-O-alkyl and 1-O-alk-1'-enyl ethers. Using these methodologies the human lens was found to contain several abundant 1-O-alkyl glycerophos-phoethanolamines, including GPEtn(16:0e/9Z-18:1), GPEtn(11Z-18:1e/9Z-18:1), and GPEtn(18:0e/9Z-18:1), as well as a related series of unusual 1-O-alkyl glycerophosphoserines, including GPSer(16:0e/9Z-18:1), GPSer(11Z-18:1e/9Z-18:1), GPSer(18:0e/9Z-18:1) that to our knowledge have not previously been observed in human tissue. Isomeric 1-O-alk-1'-enyl ethers were absent or in low abundance. Examination of the double bond position within the phospholipids using OzID revealed that several positional isomers were present, including sites of unsaturation at the n-9, n-7, and even n-5 positions. Tandem CID/OzID experiments revealed a preference for double bonds in the n-7 position of 1-O-ether linked chains, while n-9 double bonds predominated in the ester-linked fatty acids [e.g., GPEtn(11Z-18:1e/9Z-18:1) and GPSer(11Z-18:1e/9Z-18:1)]. Different combinations of these double bond positional isomers within chains at the sn-1 and sn-2 positions point to a remarkable molecular diversity of ether-lipids within the human lens.