727 resultados para ecological engineering
Resumo:
Proceedings of the Design Theme Postgraduate Student Conference, held 10th September 2008 at Queensland University of Technology.
Resumo:
This paper focuses on implementing engineering education in middle school classrooms (grade levels 7-9). One of the aims of the study was to foster students’ and teachers’ knowledge and understanding of engineering in society. Given the increasing importance of engineering in shaping our daily lives, it is imperative that we foster in students an interest and drive to participate in engineering education, increase their awareness of engineering as a career path, and inform them of the links between engineering and the enabling subjects, mathematics, science, and technology. Data for the study are drawn from five classes across three schools. Grade 7 students’ responded to initial whole class discussions on what is an engineer, what is engineering, what characteristics engineers require, engineers (family/friends) that they know, and subjects that may facilitate an engineering career. Students generally viewed engineers as creative, future-oriented, and artistic problem finders and solvers; planners and designers; “seekers” and inventors; and builders of constructions. Students also viewed engineers as adventurous, decisive, community-minded, reliable, and “smart.” In addition to a range of mathematics and science topics, students identified business studies, ICT, graphics, art, and history as facilitating careers in engineering. Although students displayed a broadened awareness of engineering than the existing research suggests, there was limited knowledge of various engineering fields and a strong perception of engineering as large construction.
Resumo:
This paper presents the method and results of a survey of 27 of the 33 Australian universities teaching engineering education in late 2007, undertaken by The Natural Edge Project (hosted by Griffith University and the Australian National University) and supported by the National Framework for Energy Efficiency. This survey aimed to ascertain the extent of energy efficiency (EE) education, and to identify preferred methods to assist in increasing the extent to which EE education is embedded in engineering curriculum. In this paper the context for the survey is supported by a summary of the key results from a variety of surveys undertaken over the last decade internationally. The paper concludes that EE education across universities and engineering disciplines in Australia is currently highly variable and ad hoc. Based on the results of the survey, this paper highlights a number of preferred options to support educators to embed sustainability within engineering programs, and future opportunities for monitoring EE, within the context of engineering education for sustainable development (EESD).
Resumo:
This paper uses an aggregate quantity space to decompose the temporal changes in nitrogen use efficiency and cumulative exergy use efficiency into changes of Moorsteen–Bjurek (MB) Total Factor Productivity (TFP) changes and changes in the aggregate nitrogen and cumulative exergy contents. Changes in productivity can be broken into technical change and changes in various efficiency measures such as technical efficiency, scale efficiency and residual mix efficiency. Changes in the aggregate nitrogen and cumulative exergy contents can be driven by changes in the quality of inputs and outputs and changes in the mixes of inputs and outputs. Also with cumulative exergy content analysis, changes in the efficiency in input production can increase or decrease the cumulative exergy transformity of agricultural production. The empirical study in 30 member countries of the Organisation for Economic Co-operation Development from 1990 to 2003 yielded some important findings. The production technology progressed but there were reductions in technical efficiency, scale efficiency and residual mix efficiency levels. This result suggests that the production frontier had shifted up but there existed lags in the responses of member countries to the technological change. Given TFP growth, improvements in nutrient use efficiency and cumulative exergy use efficiency were counteracted by reductions in the changes of the aggregate nitrogen contents ratio and aggregate cumulative exergy contents ratio. The empirical results also confirmed that different combinations of inputs and outputs as well as the quality of inputs and outputs could have more influence on the growth of nutrient and cumulative exergy use efficiency than factors that had driven productivity change. Keywords: Nutrient use efficiency; Cumulative exergy use efficiency; Thermodynamic efficiency change; Productivity growth; OECD agriculture; Sustainability