242 resultados para conditions of contact
Resumo:
Highly ordered mesoporous carbon (MC) has been synthesized from sucrose, a non-toxic and costeffective source of carbon. X-ray diffraction, N2 adsorption–desorption isotherm and transmission electron micrograph (TEM) were used to characterize the MC. The XRD patterns show the formation of highly ordered mesoporous structures of SBA15 and mesoporous carbon. The N2 adsorptiondesorption isotherms suggest that the MC exhibits a narrow pore-size distribution with high surface area of 1559 m2/g. The potential application of MC as a novel electrode material was investigated using cyclic voltammetry for riboflavin (vitamin B2) and dopamine. MC-modified glassy carbon electrode (MC/GC) shows increase in peak current compared to GC electrode in potassium ferricyanide which clearly suggest that MC/GC possesses larger electrode area (1.8 fold) compared with bare GC electrode. The electrocatalytic behavior of MC/GC was investigated towards the oxidation of riboflavin (vitamin B2) and dopamine using cyclic voltammetry which show larger oxidation current compared to unmodified electrode and thus MC/GC may have the potential to be used as a chemically modified electrode.
Resumo:
This study examined the effect of exercise intensity and duration during 5-day heat acclimation (HA) on cycling performance and neuromuscular responses. 20 recreationally trained males completed a ‘baseline’ trial followed by 5 consecutive days HA, and a ‘post-acclimation’ trial. Baseline and post-acclimation trials consisted of maximal voluntary contractions (MVC), a single and repeated countermovement jump protocol, 20 km cycling time trial(TT) and 5x6 s maximal sprints (SPR). Cycling trials were undertaken in 33.0 ± 0.8 °C and 60 ± 3% relative humidity.Core(Tcore), and skin temperatures (Tskin), heart rate (HR), rating of perceived exertion (RPE) and thermal sensation were recorded throughout cycling trials. Participants were assigned to either 30 min high-intensity (30HI) or 90 min low-intensity (90LI) cohorts for HA, conducted in environmental conditions of 32.0 ± 1.6 °C. Percentage change time to complete the 20 km TT for the 90LI cohort was significantly improved post-acclimation(-5.9 ± 7.0%; P=0.04) compared to the 30HI cohort (-0.18 ± 3.9%; P<0.05). The 30HI cohort showed greatest improvements in power output (PO) during post-acclimation SPR1 and 2 compared to 90LI (546 ± 128 W and 517 ± 87 W,respectively; P<0.02). No differences were evident for MVC within 30HI cohort, however, a reduced performance indicated by % change within the 90LI (P=0.04). Compared to baseline, mean Tcore was reduced post-acclimation within the 30HI cohort (P=0.05) while mean Tcore and HR were significantly reduced within the 90LI cohort (P=0.01 and 0.04, respectively). Greater physiological adaptations and performance improvements were noted within the 90LI cohort compared to the 30HI. However, 30HI did provide some benefit to anaerobic performance including sprint PO and MVC. These findings suggest specifying training duration and intensity during heat acclimation may be useful for specific post-acclimation performance.