263 resultados para candidate genes


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ankylosing Spondylitis (AS) is a common inflammatory rheumatic disease with a predilection for the axial skeleton, affecting 0.2% of the population. Current diagnostic criteria rely on a composite of clinical and radiological changes, with a mean time to diagnosis of 5 to 10 years. In this study we employed nano liquid-chromatography mass spectrometry analysis to detect and quantify proteins and small compounds including endogenous peptides and metabolites in serum from 18 AS patients and nine healthy individuals. We identified a total of 316 proteins in serum, of which 22 showed significant up- or down-regulation (p < 0.05) in AS patients. Receiver operating characteristic analysis of combined levels of serum amyloid P component and inter-α-trypsin inhibitor heavy chain 1 revealed high diagnostic value for Ankylosing Spondylitis (area under the curve = 0.98). We also depleted individual sera of proteins to analyze endogenous peptides and metabolic compounds. We detected more than 7000 molecular features in patients and healthy individuals. Quantitative MS analysis revealed compound profiles that correlate with the clinical assessment of disease activity. One molecular feature identified as a Vitamin D3 metabolite-(23S,25R)-25-hydroxyvitamin D3 26,23-peroxylactone-was down-regulated in AS. The ratio of this vitamin D metabolite versus vitamin D binding protein serum levels was also altered in AS as compared with controls. These changes may contribute to pathological skeletal changes in AS. Our study is the first example of an integration of proteomic and metabolomic techniques to find new biomarker candidates for the diagnosis of Ankylosing Spondylitis

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Familial juvenile hyperuricaemic (gouty) nephropathy (FJHN), is an autosomal dominant disease associated with a reduced fractional excretion of urate, and progressive renal failure. FJHN is genetically heterogeneous and due to mutations of three genes: uromodulin (UMOD), renin (REN) and hepatocyte nuclear factor-1beta (HNF-1β) on chromosomes 16p12, 1q32.1, and 17q12, respectively. However, UMOD, REN or HNF-1β mutations are found in only ~45% of FJHN probands, indicating the involvement of other genetic loci in ~55% of probands. To identify other FJHN loci, we performed a single nucleotide polymorphism (SNP)-based genome-wide linkage analysis, in six FJHN families in whom UMOD, HNF-1β and REN mutations had been excluded. Parametric linkage analysis using a 'rare dominant' model established linkage in five of the six FJHN families, with a LOD score >+3, at 0% recombination, between FJHN and SNPs at chromosome 2p22.1-p21. Analysis of individual recombinants in two unrelated affected individuals defined a ~5.5 Mbp interval, flanked telomerically by SNP RS372139 and centromerically by RS896986 that contained the locus, designated FJHN3. The interval contains 28 genes, and DNA sequence analysis of the most likely candidate, solute carrier family 8 member 1 (SLC8A1), did not identify any abnormalities in the FJHN3 probands. FJHN3 is likely located within a ~5.5 Mbp interval on chromosome 2p22.1-p21, and identifying the genetic abnormality will help to further elucidate mechanisms predisposing to gout and renal failure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION Although the high heritability of BMD variation has long been established, few genes have been conclusively shown to affect the variation of BMD in the general population. Extreme truncate selection has been proposed as a more powerful alternative to unselected cohort designs in quantitative trait association studies. We sought to test these theoretical predictions in studies of the bone densitometry measures BMD, BMC, and femoral neck area, by investigating their association with members of the Wnt pathway, some of which have previously been shown to be associated with BMD in much larger cohorts, in a moderate-sized extreme truncate selected cohort (absolute value BMD Z-scores = 1.5-4.0; n = 344). MATERIALS AND METHODS Ninety-six tag-single nucleotide polymorphism (SNPs) lying in 13 Wnt signaling pathway genes were selected to tag common genetic variation (minor allele frequency [MAF] > 5% with an r(2) > 0.8) within 5 kb of all exons of 13 Wnt signaling pathway genes. The genes studied included LRP1, LRP5, LRP6, Wnt3a, Wnt7b, Wnt10b, SFRP1, SFRP2, DKK1, DKK2, FZD7, WISP3, and SOST. Three hundred forty-four cases with either high or low BMD were genotyped by Illumina Goldengate microarray SNP genotyping methods. Association was tested either by Cochrane-Armitage test for dichotomous variables or by linear regression for quantitative traits. RESULTS Strong association was shown with LRP5, polymorphisms of which have previously been shown to influence total hip BMD (minimum p = 0.0006). In addition, polymorphisms of the Wnt antagonist, SFRP1, were significantly associated with BMD and BMC (minimum p = 0.00042). Previously reported associations of LRP1, LRP6, and SOST with BMD were confirmed. Two other Wnt pathway genes, Wnt3a and DKK2, also showed nominal association with BMD. CONCLUSIONS This study shows that polymorphisms of multiple members of the Wnt pathway are associated with BMD variation. Furthermore, this study shows in a practical trial that study designs involving extreme truncate selection and moderate sample sizes can robustly identify genes of relevant effect sizes involved in BMD variation in the general population. This has implications for the design of future genome-wide studies of quantitative bone phenotypes relevant to osteoporosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective. The heritability of RA has been estimated to be ∼55%, of which the MHC contributes about one-third. HLA-DRB1 alleles are strongly associated with RA, but it is likely that significant non-DRB1 MHC genetic susceptibility factors are involved. Previously, we identified two three-marker haplotypes in a 106-kb region in the MHC class III region immediately centromeric to TNF, which are strongly associated with RA on HLA-DRB1*0404 haplotypes. In the present study, we aimed to refine these associations further using a combination of genotyping and gene expression studies. Methods. Thirty-nine nucleotide polymorphisms (SNPs) were genotyped in 95 DRB1*0404 carrying unrelated RA cases, 125 DRB1*0404 - carrying healthy controls and 87 parent-case trio RA families in which the affected child carried HLA-DRB1*04. Quantitative RT-PCR was used to assess the expression of the positional candidate MHC class III genes APOM, BAT2, BAT3, BAT4, BAT5, AIF1, C6orf47, CSNK2β and LY6G5C, and the housekeeper genes, hypoxanthine-guanine phosphoribosyltransferase (HPRT) and β2-microglobulin (B2M) in 31 RA cases and 21 ethnically, age- and sex-matched healthy controls. Synovial membrane specimens from RA, PsA and OA cases were stained by an indirect immunoperoxidase technique using a mouse-anti-human AIF1 monoclonal antibody. Results. Association was observed between RA and single markers or two marker haplotypes involving AIF1, BAT3 and CSNK. AIF1 was also significantly overexpressed in RA mononuclear cells (1.5- to 1.9-fold difference, P = 0.02 vs HPRT, P = 0.002 vs B2M). AIF1 protein was clearly expressed by synovial macrophages in all the inflammatory synovial samples in contrast to the non-inflammatory OA samples. Conclusions. The results of the genotyping and expression studies presented here suggest a role for AIF1 in both the aetiology and pathogenesis of RA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ankylosing spondylitis (AS), the prototypic seronegative arthropathy, is known to be highly heritable, with >90% of the risk of developing the disease determined genetically. As with most common heritable diseases, progress in identifying the genes involved using family-based or candidate gene approaches has been slow. The recent development of the genome-wide association study approach has revolutionized genetic studies of such diseases. Early studies in ankylosing spondylitis have produced two major breakthroughs in the identification of genes contributing roughly one third of the population attributable risk of the disease, and pointing directly to a potential therapy. These exciting findings highlight the potential of future more comprehensive genetic studies of determinants of disease risk and clinical manifestations, and are the biggest advance in our understanding of the causation of the disease since the discovery of the association with HLA-B27.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives. Extracellular inorganic pyrophosphate (ePPi) inhibits certain forms of pathological mineralization while promoting others. Three molecules involved in ePPi regulation are important candidates for the development of calcium pyrophosphate dihydrate chondrocalcinosis (CPPD CC). These include ANKH, ectonucleotide pyrophosphatase (ENPP1) and TNAP. We have previously showed that genetic variation in ANKH is a cause of autosomal dominant familial CC and also some sporadic cases of CPPD CC. We now investigate the possible role of ENPP1 and TNAP in CPPD CC. Methods. Exons, untranslated regions (UTR) and exon-intron boundaries of ENPP1 and TNAP were sequenced using ABI Big Dye chemistry on automated sequencers. Sixteen variants were identified (3 in ENPP1 and 13 in TNAP) and were subsequently genotyped in 128 sporadic Caucasian CPPD CC patients and 600 healthy controls using a combination of polymerase chain reaction/restriction fragment-length polymorphism analysis or using Taqman. Allele and genotype frequencies were compared between cases and controls using the χ 2 test. Linkage disequilibrium, haplotype and the single nucleotide polymorphism-specific analyses were also performed. This study had 80% power to detect an odds ratio of 2.2 or more at these loci. Results. No difference was observed in the allele or genotype frequencies between patients and controls at either ENPP1 or TNAP. Conclusions. Polymorphisms of ENPP1 and TNAP are not major determinants of susceptibility to CC in the population studied. Further studies of the aetiology of sporadic CPPD CC are required to determine its causes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The major histocompatibility complex (MHC) on chromosome 6 is associated with susceptibility to more common diseases than any other region of the human genome, including almost all disorders classified as autoimmune. In type 1 diabetes the major genetic susceptibility determinants have been mapped to the MHC class II genes HLA-DQB1 and HLA-DRB1 (refs 1–3), but these genes cannot completely explain the association between type 1 diabetes and the MHC region4, 5, 6, 7, 8, 9, 10, 11. Owing to the region's extreme gene density, the multiplicity of disease-associated alleles, strong associations between alleles, limited genotyping capability, and inadequate statistical approaches and sample sizes, which, and how many, loci within the MHC determine susceptibility remains unclear. Here, in several large type 1 diabetes data sets, we analyse a combined total of 1,729 polymorphisms, and apply statistical methods—recursive partitioning and regression...

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Genetic factors are known to influence both the peak bone mass and probably the rate of change in bone density. A range of regulatory and structural genes has been proposed to be involved including collagen 1α1 (COL1A1), the estrogen receptor (ER), and the vitamin D receptor (VDR), but the actual genes involved are uncertain. We therefore studied the role of the COL1A1 and VDR loci in control of bone density by linkage in 45 dizygotic twin pairs and 29 nuclear families comprising 120 individuals. The influences on bone density of polymorphisms of COL1A1, VDR, and ER were studied by association both cross-sectionally and longitudinally in 193 elderly postmenopausal women (average age, 69 years) over a mean follow-up time of 6.3 years. Weak linkage of the COL1A1 locus with bone density was observed in both twins and families (p = 0.02 in both data sets), confirming previous observations of linkage of this locus with bone density. Association between the MscI polymorphism of COL1A1 and rate of lumbar spine bone loss was observed with significant gene-environment interaction related to dietary calcium intake (p = 0.0006). In the lowest tertile of dietary calcium intake, carriers of "s" alleles lost more bone than "SS" homozygotes (p = 0.01), whereas the opposite was observed in the highest dietary calcium intake (p = 0.003). Association also was observed between rate of bone loss at both the femoral neck and the lumbar spine and the TaqI VDR polymorphism (p = 0.03). This association was strongest in those in the lowest tertile of calcium intake, also suggesting the presence of gene-environment interaction involving dietary calcium and VDR, influencing bone turnover. No significant association was observed between the PvuII ER polymorphism alone or in combination with VDR or COL1A1 genotypes, with either bone density or its rate of change. These data support the involvement of COL1A1 in determination of bone density and the interaction of both COL1A1 and VDR with calcium intake in regulation of change of bone density over time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Androgen withdrawal is the only effective form of systemic therapy for men with advanced disease, producing symptomatic and/or objective response in 80% of patients. Unfortunately, androgen independent (AI) progression and death occurs within a few years in the majority of these cases (6). Prostate cancer is highly chemoresistant, with objective response rates of 10% and no demonstrated survival benefit (28). Hormone refractory prostate cancer (HRPC) is therefore the main obstacle to improving the survival and quality of life in patients with advanced disease, and novel therapeutic strategies that target the molecular basis of androgen and chemoresistance are required.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Prostate cancer is the second most common malignancy among men worldwide. Genome-wide association studies have identified 100 risk variants for prostate cancer, which can explain approximately 33% of the familial risk of the disease. We hypothesized that a comprehensive analysis of genetic variations found within the 3' untranslated region of genes predicted to affect miRNA binding (miRSNP) can identify additional prostate cancer risk variants. We investigated the association between 2,169 miRSNPs and prostate cancer risk in a large-scale analysis of 22,301 cases and 22,320 controls of European ancestry from 23 participating studies. Twenty-two miRSNPs were associated (P<2.3×10(-5)) with risk of prostate cancer, 10 of which were within 7 genes previously not mapped by GWAS studies. Further, using miRNA mimics and reporter gene assays, we showed that miR-3162-5p has specific affinity for the KLK3 rs1058205 miRSNP T-allele, whereas miR-370 has greater affinity for the VAMP8 rs1010 miRSNP A-allele, validating their functional role. SIGNIFICANCE Findings from this large association study suggest that a focus on miRSNPs, including functional evaluation, can identify candidate risk loci below currently accepted statistical levels of genome-wide significance. Studies of miRNAs and their interactions with SNPs could provide further insights into the mechanisms of prostate cancer risk.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The banana industry worldwide is under threat from a fungal disease known as Fusarium wilt, a disease for which there is no chemical control. Conventional breeding approaches to generate resistant banana varieties are lengthy and very difficult. As such, genetic engineering for disease resistance is considered the most viable control option. In this PhD thesis, genetically modified banana plants were generated using several different stress tolerance genes. When challenged with Fusarium wilt in glasshouse trials, some lines showed increased resistance to the disease. The promising elite lines generated in this study will now require testing in field trials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: It is unclear whether patients diagnosed according to International Classification of Headache Disorders criteria for migraine with aura (MA) and migraine without aura (MO) experience distinct disorders or whether their migraine subtypes are genetically related. Aim: Using a novel gene-based (statistical) approach, we aimed to identify individual genes and pathways associated both with MA and MO. Methods: Gene-based tests were performed using genome-wide association summary statistic results from the most recent International Headache Genetics Consortium study comparing 4505 MA cases with 34,813 controls and 4038 MO cases with 40,294 controls. After accounting for non-independence of gene-based test results, we examined the significance of the proportion of shared genes associated with MA and MO. Results: We found a significant overlap in genes associated with MA and MO. Of the total 1514 genes with a nominally significant gene-based p value (pgene-based ≤ 0.05) in the MA subgroup, 107 also produced pgene-based ≤ 0.05 in the MO subgroup. The proportion of overlapping genes is almost double the empirically derived null expectation, producing significant evidence of gene-based overlap (pleiotropy) (pbinomial-test = 1.5 × 10–4). Combining results across MA and MO, six genes produced genome-wide significant gene-based p values. Four of these genes (TRPM8, UFL1, FHL5 and LRP1) were located in close proximity to previously reported genome-wide significant SNPs for migraine, while two genes, TARBP2 and NPFF separated by just 259 bp on chromosome 12q13.13, represent a novel risk locus. The genes overlapping in both migraine types were enriched for functions related to inflammation, the cardiovascular system and connective tissue. Conclusions: Our results provide novel insight into the likely genes and biological mechanisms that underlie both MA and MO, and when combined with previous data, highlight the neuropeptide FF-amide peptide encoding gene (NPFF) as a novel candidate risk gene for both types of migraine.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A genome-wide association study (GWAS) of educational attainment was conducted in a discovery sample of 101,069 individuals and a replication sample of 25,490. Three independent single-nucleotide polymorphisms (SNPs) are genome-wide significant (rs9320913, rs11584700, rs4851266), and all three replicate. Estimated effects sizes are small (coefficient of determination R(2) approximately 0.02%), approximately 1 month of schooling per allele. A linear polygenic score from all measured SNPs accounts for approximately 2% of the variance in both educational attainment and cognitive function. Genes in the region of the loci have previously been associated with health, cognitive, and central nervous system phenotypes, and bioinformatics analyses suggest the involvement of the anterior caudate nucleus. These findings provide promising candidate SNPs for follow-up work, and our effect size estimates can anchor power analyses in social-science genetics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Uterine leiomyomata (UL), the most prevalent pelvic tumors in women of reproductive age, pose a major public health problem given their high frequency, associated morbidities, and most common indication for hysterectomies. A genetic component to UL predisposition is supported by analyses of ethnic predisposition, twin studies, and familial aggregation. A genome-wide SNP linkage panel was genotyped and analyzed in 261 white UL-affected sister-pair families from the Finding Genes for Fibroids study. Two significant linkage regions were detected in 10p11 (LOD = 4.15) and 3p21 (LOD = 3.73), and five additional linkage regions were identified with LOD scores > 2.00 in 2q37, 5p13, 11p15, 12q14, and 17q25. Genome-wide association studies were performed in two independent cohorts of white women, and a meta-analysis was conducted. One SNP (rs4247357) was identified with a p value (p = 3.05 x 10(-8)) that reached genome-wide significance (odds ratio = 1.299). The candidate SNP is under a linkage peak and in a block of linkage disequilibrium in 17q25.3, which spans fatty acid synthase (FASN), coiled-coil-domain-containing 57 (CCDC57), and solute-carrier family 16, member 3 (SLC16A3). By tissue microarray immunohistochemistry, we found elevated (3-fold) FAS levels in UL-affected tissue compared to matched myometrial tissue. FAS transcripts and/or protein levels are upregulated in various neoplasms and implicated in tumor cell survival. FASN represents the initial UL risk allele identified in white women by a genome-wide, unbiased approach and opens a path to management and potential therapeutic intervention.