312 resultados para Trunk diameter


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rapid, simple, catalyst-free, room-temperature sonochemical fabrication of long (up to 30 mm), ultra-thin (about 20 nm), crystalline gold nanowires on nanoporous anodic alumina membranes is reported. It is demonstrated that the nanowires nucleate and grow inside the nanosized pores and then form a dense network on the bottom side of the membrane. A growth mechanism is proposed based on the formation of through channels in the Al2O3 membrane by sonochemical etching, followed by nanowire nucleation in the channels and their further extrusion out of the pores by acoustic cavitation. This process can be used for the fabrication of metal nanowires with highly controllable diameter and density, suitable for numerous applications such as nanoelectronic, nanofluidic, and optoelectronic components and devices.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Combustion sources are well-known sources of electrical ions (Howard, J.B. et al. 1973). Motor vehicles emissions are one of the main sources of ions in urban environments. The presence of charged particles in motor vehicle emissions has been known for many years (Kittelson, 1986; Yu et al, 2004; Jung and Kittelson, 2005). Although these particles are probably charged by the attachment of air ions, there is very little information on the nature, sign and magnitude of the small ions (diameter < 1.6 nm) emitted by motor vehicles and/or present by the sides of roads.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Corona discharge is responsible for the small ions found near overhead power lines, and these are capable of modifying the ambient electrical environment such as the dc electric field at ground level (Fews, Wilding et al. 2002). Once produced, small ions quickly attach to aerosol particles in the air, producing ‘large ions’ which are roughly 1 nm to 1 µm in diameter. However, very few studies have reported measurements of ions produced by power lines and its impact on particle charge concentrations. In this present study, the measurements were conducted as a function of normal downwind distance from a 275kV power line for investigating the effect of corona ions on air ions, aerosol particle charge concentration and dc e-filed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

INTRODUCTION Icing (cryotherapy) is being widely used for the treatment of closed soft tissue trauma (CSTT), such as those resulting from sport injuries. It is believed that cryotherapy induces vasoconstriction and through this mechanism reduces inflammation [1]. However, the impact of this technique on the healing of impaired vasculature and muscle injuries following trauma remains controversial. Recent evidence suggests that the muscle regeneration is delayed after cryotherapy [2]. Consequently, we aimed to investigate the effect of cryotherapy on the vascular morphology following CSTT using an experimental model in rats by contrast-enhanced micro-CT imaging. METHODS Fifty four rats were divided into three main groups: control (no injury, n=6), sham (CSTT but no icing treatment, n=24) and icing (CSTT, treated with one session of ice block massaged directly on the injured muscle for 20 minutes, n=24). The CSTT was induced to the left thigh (Biceps Femoris) of anaesthetised rats (Male, Wistar) to create a standardized and reproducible vascular and muscle injury using an impact device [3]. Following trauma, animals were euthanized after 1, 3, 7, and 28 days healing time (n=6 for each time point). For a three-dimensional vascular morphological assessment, the blood vessels of euthanised rats were flushed with heparinised saline and then perfused with a radio-opaque contrast agent (Microfil, MV 122, Flowtech, USA) using an infusion pump. Both hind-limbs were dissected, and then the injured and non-injured limbs were imaged using a micro-CT scanner (µCT 40, Scanco Medical, Switzerland) and total volume of the perfused blood vessels (TVV) was calculated. More detailed morphological parameters such as vessel volume (VV), diameter (VD), spacing (VSp), number (VN) and connectivity (VConn) were quantified through high resolution (6 µm), micro-CT-scanned biopsy samples (diameter: 8mm) taken directly from the region of the injured muscles. The biopsies were then analysed histologically to confirm the results derived from contrast-enhanced micro-CT imaging. RESULTS AND DISCUSSION The TVV was significantly higher in the injured legs compared to the non-injured legs at day 1 and 7 in the sham group and at day 28 in both sham and icing groups. The biopsies from the injured legs of the icing group showed a significant reduction in VV, VN, VD, VConn and an increase in VSp compared to those in the sham and control groups at days 1, 3 and 7, post injury. While the injured legs of the sham group exhibited a decrease in VN and VConn 28 days post trauma, indicating a return to the original values prior to trauma, these parameters had increased in the icing group (Figure 1). Also, at day 1 post injury, VV and VD of the injured legs were significantly higher in the sham group compared to the icing group, which may be attributed to the effect of vasoconstriction induced by icing. Further histomorphological evaluation of day 1 post injury, indicated that although cryotherapy significantly reduced the injury size and influx of inflammatory cells, including macrophages and neutrophils, a delay in vascular and muscle fiber regeneration was found at later time points confirming other reports from the literature [2]. CONCLUSIONS We have demonstrated using micro-CT imaging that the vascular morphology changes after CSTT, and that its recovery is affected by therapeutic modalities such as icing. This may be useful for the development of future clinical monitoring, diagnosis and treatment of CSTT. While icing reduces the swelling after trauma, our results suggest that it may delay the recovery of the vasculature in the injured tissue.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Corona discharge is responsible for the flux of small ions from overhead power lines, and is capable of modifying the ambient electrical environment, such as the air ion concentrations at ground level. Once produced, small ions quickly attach to aerosol particles in the air, producing ‘large ions’, approximately 1 nm to 1 µm in diameter. However, very few studies have measured air ion concentrations directly near high voltage transmission lines. The present study involved the simultaneously measurement of small ion concentration and net large ion concentration using air ion counters and an aerosol electrometer at four power line sites. Both positive and negative small ion concentration (<1.6nm), net large ion concentration (2nm-5μm) and particle number concentration (10nm-2μm) were measured using air ion counters and an aerosol electrometer at four power line sites. Measurements at sites 1 and 2 were conducted at both upwind and downwind sides. The results showed that total ion concentrations on the downwind side were 3-5 times higher than on the upwind side, while particle number concentrations did not show a significant difference. This result also shows that a large number of ions were emitted from the power lines at sites 1 and 2. Furthermore, both positive and negative ions were observed at different power line sites. Dominant positive ions were observed at site 1, with a concentration of 4.4 x 103 ions cm-3, which was 10 times higher than on the upwind side. Contrary to site 1, sites 2 to 4 showed negative ion emissions, with concentrations of -1.2 x 103, -460 and -410 ions cm-3, respectively. These values were higher than the background urban negative ion concentration of 400 cm-3. At site 1 and site 2, the net ion concentration and net particle charge concentration on downwind side of the lines showed same polarities. Further investigations were also conducted into the correlation between net ion concentration and net charge particle concentration 20 m downwind of the power lines at site 2. The two parameters showed a correlation coefficient of 0.72, indicating that a substantial number of ions could attach to particles and affect the particle charge status within a short distance from the source.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The axial coefficients of thermal expansion (CTE) of various carbon nanotubes (CNTs), i.e., single-wall carbon nanotubes (SWCNTs), and some multi-wall carbon nanotubes (MWCNTs), were predicted using molecular dynamics (MDs) simulations. The effects of two parameters, i.e., temperature and the CNT diameter, on CTE were investigated extensively. For all SWCNTs and MWCNTs, the obtained results clearly revealed that within a wide low temperature range, their axial CTEs are negative. As the diameter of CNTs decreases, this temperature range for negative axial CTEs becomes narrow, and positive axial CTEs appear in high temperature range. It was found that the axial CTEs vary nonlinearly with the temperature, however, they decrease linearly as the CNT diameter increases. Moreover, within a wide temperature range, a set of empirical formulations was proposed for evaluating the axial CTEs of armchair and zigzag SWCNTs using the above two parameters. Finally, it was found that the absolute value of the negative axial CTE of any MWCNT is much smaller than those of its constituent SWCNTs, and the average value of the CTEs of its constituent SWCNTs. The present fundamental study is very important for understanding the thermal behaviors of CNTs in such as nanocomposite temperature sensors, or nanoelectronics devices using CNTs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A numerical time-dependent model of an active magnetic regenerator (AMR) was developed for cooling in the kilowatt range. Earlier numerical models have been mostly developed for cooling power in the 0.4 kW range. In contrast, this paper reports the applicability of magnetic refrigeration to the 50 kW range. A packed bed active magnetic regenerator was modelled and the influence of parameters such as geometry and operating parameters were studied for different geometries. The pressure drop for AMR bed length and particle diameter was also studied. High cooling power and coefficient of performance (COP) were achieved by optimization of the diameter of the magnetocaloric powder particles and operating frequency. The optimum operating conditions of the AMR for a cooling capacity of 50 kW was determined for a temperature span of 15 K. The predicted coefficient of performance (COP) was found to be ∼6, making it an attractive alternative to vapour compression systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

While the use of environmental factors in the analysis and prediction of failures of buried reticulation pipes in cold environments has been the focus of extensive work, the same cannot be said for failures occurring on pipes in other (non-freezing) environments. A novel analysis of pipe failures in such an environment is the subject of this paper. An exploratory statistical analysis was undertaken, identifying a peak in failure rates during mid to late summer. This peak was found to correspond to a peak in the rate of circumferential failures, whilst the rate of longitudinal failures remained constant. Investigation into the effect of climate on failure rates revealed that the peak in failure rates occurs due to differential soil movement as the result of shrinkage in expansive soils.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study compared proximal femoral morphology in patients living in soft and hard water regions. The proximal femoral morphology of two groups of 70 patients living in hard and soft water regions with a mean age of 72.3 (range 50 to 87 years) were measured using an antero-posterior radiograph of the non-operated hip with magnification adjusted. The medullary canal diameter at the level of the lesser trochanter (LT) was significantly wider in patients living in the hard water region (mean width 1.9 mm wider; p= 0.003). No statistical significant difference was found in the medullary canal width at 10 cm below the level of LT, Dorr index, or Canal Bone Ratio (CBR). In conclusion, the proximal femoral morphology does differ in patients living in soft and hard water areas. These results may have an important clinical bearing in patients undergoing total hip replacement surgery. Further research is needed to determine whether implant survivorship is affected in patients living in hard and soft water regions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction Clinical guidelines for the treatment of chronic low back pain suggest the use of supervised exercise. Motor control (MC) based exercise is widely used within clinical practice but its efficacy is equivalent to general exercise therapy. MC exercise targets the trunk musculature. Considering the mechanical links between the hip, pelvis, and lumbar spine, surprisingly little focus has been on investigating the contribution of the hip musculature to lumbopelvic support. The purpose of this study is to compare the efficacy of two exercise programs for the treatment of non-specific low back pain (NSLBP). Methods Eighty individuals aged 18-65 years of age were randomized into two groups to participate in this trial. The primary outcome measures included self-reported pain intensity (0-100mm VAS) and percent disability (Oswestry Disability Index V2). Bilateral measures of hip strength (N/kg) and two dimensional frontal plane mechanics (º) were the secondary outcomes. Outcomes were measured at baseline and following a six-week home based exercise program including weekly sessions of real-time ultrasound imaging. Results Within group comparisons revealed clinically meaningful reductions in pain for both groups. The MC exercise only (N= 40, xˉ =-20.9mm, 95%CI -25.7, -16.1) and the combined MC and hip exercise (N= 40, xˉ = -24.9mm, 95%CI -30.8, -19.0). There was no statistical difference in the change of pain (xˉ =-4.0mm, t= -1.07, p=0.29, 95%CI -11.5, 3.5) or disability (xˉ =-0.3%, t=-0.19, p=0.85, 95%CI -11.5, 3.5) between groups. Conclusion Both exercise programs had similar and positive effects on NSLBP which support the use of the home based exercise programs with weekly supervised visits. However, the addition of specific hip strengthening exercises to a MC based exercise program did not result in significantly greater reductions in pain or disability. Trial Registration NCTO1567566 Funding: Worker’s Compensation Board Alberta Research Grant.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose Small field x-ray beam dosimetry is difficult due to a lack of lateral electronic equilibrium, source occlusion, high dose gradients and detector volume averaging. Currently there is no single definitive detector recommended for small field dosimetry. The objective of this work was to evaluate the performance of a new commercial synthetic diamond detector, namely the PTW 60019 microDiamond, for the dosimetry of small x-ray fields as used in stereotactic radiosurgery (SRS). Methods Small field sizes were defined by BrainLAB circular cones (4 – 30 mm diameter) on a Novalis Trilogy linear accelerator and using the 6 MV SRS x-ray beam mode for all measurements. Percentage depth doses were measured and compared to an IBA SFD and a PTW 60012 E diode. Cross profiles were measured and compared to an IBA SFD diode. Field factors, Ω_(Q_clin,Q_msr)^(f_clin,f_msr ), were calculated by Monte Carlo methods using BEAMnrc and correction factors, k_(Q_clin,Q_msr)^(f_clin,f_msr ), were derived for the PTW 60019 microDiamond detector. Results For the small fields of 4 to 30 mm diameter, there were dose differences in the PDDs of up to 1.5% when compared to an IBA SFD and PTW 60012 E diode detector. For the cross profile measurements the penumbra values varied, depending upon the orientation of the detector. The field factors, Ω_(Q_clin,Q_msr)^(f_clin,f_msr ), were calculated for these field diameters at a depth of 1.4 cm in water and they were within 2.7% of published values for a similar linear accelerator. The corrections factors, k_(Q_clin,Q_msr)^(f_clin,f_msr ), were derived for the PTW 60019 microDiamond detector. Conclusions We conclude that the new PTW 60019 microDiamond detector is generally suitable for relative dosimetry in small 6 MV SRS beams for a Novalis Trilogy linear equipped with circular cones.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A study was conducted during 1997-99 at 2 sites in Sri Lanka (Rambukkana and Kurunegala) to investigate the responses of Swietenia macrophylla seedlings to wide, moderate and narrow openings of high to low shade conditions in a mature mixed mahogany plantations. Survival, stem growth and shoot phenology of seedlings were recorded monthly. Seedling survival a year after planting showed high mortality under high shaded gap (3-8% photosynthetically active radiation (PAR)). At 51 weeks after planting, final stem height and root collar diameter were highly significant under low shaded gaps. Increased number of shoots and shoot lenghts were observed under low shade (50-78% PAR). Increased flushing was seen in all shade regimes during the rainy period. This study illustrates that low shaded gap openings favour seeding survival, stem and shoot growth, and number of shoots. On the contrary, high shaded gaps reduce the growth of seedlings and therefore may be less attractive to shoot borers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Herein are reported the synthesis of a conjugate of chitosan with L-leucine, the preparation of nanoparticles from both chitosan and the conjugate for use in pulmonary drug delivery, and the in vitro evaluation of toxicity and inflammatory effects of both the polymers and their nanoparticles on the bronchial epithelial cell line, BEAS-2B. The nanoparticles, successfully prepared both from chitosan and the conjugate, had a diameter in the range of 10−30 nm. The polymers and their nanoparticles were tested for their effects on cell viability by MTT assay, on trans-epithelial permeability by using sodium fluorescein as a fluid phase marker, and on IL-8 secretion by ELISA. The conjugate nanoparticles had a low overall toxicity (IC50 = 2 mg/mL following 48 h exposure; no induction of IL-8 release at 0.5 mg/mL concentration), suggesting that they may be safe for pulmonary drug delivery applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE The purpose of this study was to demonstrate the potential of near infrared (NIR) spectroscopy for characterizing the health and degenerative state of articular cartilage based on the components of the Mankin score. METHODS Three models of osteoarthritic degeneration induced in laboratory rats by anterior cruciate ligament (ACL) transection, meniscectomy (MSX), and intra-articular injection of monoiodoacetate (1 mg) (MIA) were used in this study. Degeneration was induced in the right knee joint; each model group consisted of 12 rats (N = 36). After 8 weeks, the animals were euthanized and knee joints were collected. A custom-made diffuse reflectance NIR probe of 5-mm diameter was placed on the tibial and femoral surfaces, and spectral data were acquired from each specimen in the wave number range of 4,000 to 12,500 cm(-1). After spectral data acquisition, the specimens were fixed and safranin O staining (SOS) was performed to assess disease severity based on the Mankin scoring system. Using multivariate statistical analysis, with spectral preprocessing and wavelength selection technique, the spectral data were then correlated to the structural integrity (SI), cellularity (CEL), and matrix staining (SOS) components of the Mankin score for all the samples tested. RESULTS ACL models showed mild cartilage degeneration, MSX models had moderate degeneration, and MIA models showed severe cartilage degenerative changes both morphologically and histologically. Our results reveal significant linear correlations between the NIR absorption spectra and SI (R(2) = 94.78%), CEL (R(2) = 88.03%), and SOS (R(2) = 96.39%) parameters of all samples in the models. In addition, clustering of the samples according to their level of degeneration, with respect to the Mankin components, was also observed. CONCLUSIONS NIR spectroscopic probing of articular cartilage can potentially provide critical information about the health of articular cartilage matrix in early and advanced stages of osteoarthritis (OA). CLINICAL RELEVANCE This rapid nondestructive method can facilitate clinical appraisal of articular cartilage integrity during arthroscopic surgery.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nitrogen is an important nutrient that can impact the quality of aquatic environments when present in high concentration. Even though low concentration levels of ammonium-nitrogen have been observed in laboratory studies in bioretention basins, poor removal or even the production of nitrate-nitrogen within the filter is often recorded in such studies. Ten Perspex biofilter columns of 94 mm (internal diameter) were packed with a filter layer, transition layer and a gravel layer. While the filter layer was packed to a height of 800 mm, transition and gravel layers were packed to a composite height of 220 mm and operated with simulated stormwater in the laboratory. The filter layer contained 8% organic material by weight. A free board of 350 mm provided detention storage and head to facilitate infiltration. The columns were operated with different antecedent dry days (0 d to 21 d) and constant inflow concentration at a feed rate of 100 mL/min. Samples were collected from the outflow at different time intervals, between 2 min and 150 min from the start of outflow, and were tested for nitrate-nitrogen and total organic carbon. Washoff of organic carbon from the filter layer was observed to occur for 30 min of outflow. This indicated washoff of organic carbon from the filter itself. At the same time, a very low concentration of nitrate-nitrogen was recorded at the beginning of the outflow, indicating the effective removal of nitrate-nitrogen. We conclude that the removal of nitrate-nitrogen is insignificant during the wetting phase of a rainfall event and the process of denitrification is more pronounced during the drying phase of a rainfall event. Thus intermittent wetting and drying is crucial for the removal of nitrate-nitrogen in bioretention basins.