440 resultados para Surface strains


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes the development of a novel vision-based autonomous surface vehicle with the purpose of performing coordinated docking manoeuvres with a target, such as an autonomous underwater vehicle, at the water's surface. The system architecture integrates two small processor units; the first performs vehicle control and implements a virtual force based docking strategy, with the second performing vision-based target segmentation and tracking. Furthermore, the architecture utilises wireless sensor network technology allowing the vehicle to be observed by, and even integrated within an ad-hoc sensor network. Simulated and experimental results are presented demonstrating the autonomous vision- based docking strategy on a proof-of-concept vehicle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The deposition of biological material (biofouling) onto polymeric contact lenses is thought to be a major contributor to lens discomfort and hence discontinuation of wear. We describe a method to characterize lipid deposits directly from worn contact lenses utilizing liquid extraction surface analysis coupled to tandem mass spectrometry (LESA-MS/MS). This technique effected facile and reproducible extraction of lipids from the contact lens surfaces and identified lipid molecular species representing all major classes present in human tear film. Our data show that LESA-MS/MS is a rapid and comprehensive technique for the characterization of lipid-related biofouling on polymer surfaces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mass spectrometry is now an indispensable tool for lipid analysis and is arguably the driving force in the renaissance of lipid research. In its various forms, mass spectrometry is uniquely capable of resolving the extensive compositional and structural diversity of lipids in biological systems. Furthermore, it provides the ability to accurately quantify molecular-level changes in lipid populations associated with changes in metabolism and environment; bringing lipid science to the "omics" age. The recent explosion of mass spectrometry-based surface analysis techniques is fuelling further expansion of the lipidomics field. This is evidenced by the numerous papers published on the subject of mass spectrometric imaging of lipids in recent years. While imaging mass spectrometry provides new and exciting possibilities, it is but one of the many opportunities direct surface analysis offers the lipid researcher. In this review we describe the current state-of-the-art in the direct surface analysis of lipids with a focus on tissue sections, intact cells and thin-layer chromatography substrates. The suitability of these different approaches towards analysis of the major lipid classes along with their current and potential applications in the field of lipid analysis are evaluated. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Changes in the molecular structure of polymer antioxidants such as hindered amine light stabilisers (HALS) is central to their efficacy in retarding polymer degradation and therefore requires careful monitoring during their in-service lifetime. The HALS, bis-(1-octyloxy-2,2,6,6-tetramethyl-4-piperidinyl) sebacate (TIN123) and bis-(1,2,2,6,6-pentamethyl-4-piperidinyl) sebacate (TIN292), were formulated in different polymer systems and then exposed to various curing and ageing treatments to simulate in-service use. Samples of these coatings were then analysed directly using liquid extraction surface analysis (LESA) coupled with a triple quadrupole mass spectrometer. Analysis of TIN123 formulated in a cross-linked polyester revealed that the polymer matrix protected TIN123 from undergoing extensive thermal degradation that would normally occur at 292 degrees C, specifically, changes at the 1- and 4-positions of the piperidine groups. The effect of thermal versus photo-oxidative degradation was also compared for TIN292 formulated in polyacrylate films by monitoring the in situ conversion of N-CH3 substituted piperidines to N-H. The analysis confirmed that UV light was required for the conversion of N-CH3 moieties to N-H - a major pathway in the antioxidant protection of polymers - whereas this conversion was not observed with thermal degradation. The use of tandem mass spectrometric techniques, including precursor-ion scanning, is shown to be highly sensitive and specific for detecting molecular-level changes in HALS compounds and, when coupled with LESA, able to monitor these changes in situ with speed and reproducibility. (C) 2013 Elsevier B. V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stereotactic radiosurgery treatments involve the delivery of very high doses for a small number of fractions. To date, there is limited data in terms of the skin dose for the very small field sizes used in these treatments. In this work, we determine relative surface doses for small size circular collimators as used in stereotactic radiosurgery treatments. Monte Carlo calculations were performed using the BEAMnrc code with a model of the Novalis 15 Trilogy linear accelerator and the BrainLab circular collimators. The surface doses were calculated at the ICRU skin dose depth of 70 m all using the 6 MV SRS x-ray beam. The calculated surface doses varied between 15 – 12% with decreasing values as the field size increased from 4 to 30 mm. In comparison, surface doses were measured using Gafchromic EBT3 film positioned at the surface of a Virtual Water phantom. The absolute agreement between calculated and measured surface doses was better than 2.5% which is well within the 20 uncertainties of the Monte Carlo calculations and the film measurements. Based on these results, we have shown that the Gafchromic EBT3 film is suitable for surface dose estimates in very small size fields as used in SRS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Exploring thermal transport in graphene-polymer nanocomposite is significant to its applications with better thermal properties. Interfacial thermal conductance between graphene and polymer matrix plays a critical role in the improvement of thermal conductivity of graphene-polymer nanocomposite. Unfortunately, it is still challenging to understand the interfacial thermal transport between graphene nanofiller and polymer matrix at small material length scale. To this end, using non-equilibrium molecular dynamics simulations, we investigate the interfacial thermal conductance of graphene-polyethylene (PE) nanocomposite. The influence of functionalization with hydrocarbon chains on the interfacial thermal conductance of graphene-polymer nanocomposites was studied, taking into account of the effects of model size and thermal conductivity of graphene. An analytical model is also used to calculate the thermal conductivity of nanocomposite. The results are considered to contribute to development of new graphene-polymer nanocomposites with tailored thermal properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Graphene has been increasingly used as nano sized fillers to create a broad range of nanocomposites with exceptional properties. The interfaces between fillers and matrix play a critical role in dictating the overall performance of a composite. However, the load transfer mechanism along graphene-polymer interface has not been well understood. In this study, we conducted molecular dynamics simulations to investigate the influence of surface functionalization and layer length on the interfacial load transfer in graphene polymer nanocomposites. The simulation results show that oxygen-functionalized graphene leads to larger interfacial shear force than hydrogen-functionalized and pristine ones during pull-out process. The increase of oxygen coverage and layer length enhances interfacial shear force. Further increase of oxygen coverage to about 7% leads to a saturated interfacial shear force. A model was also established to demonstrate that the mechanism of interfacial load transfer consists of two contributing parts, including the formation of new surface and relative sliding along the interface. These results are believed to be useful in development of new graphene-based nanocomposites with better interfacial properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We recently developed a binding assay format by incorporating native transmembrane receptors into artificial phospholipid bilayers on biosensor devices for surface plasmon resonance spectroscopy. By extending the method to surface plasmon-enhanced fluorescence spectroscopy (SPFS), sensitive recording of the association of even very small ligands is enabled. Herewith, we monitored binding of synthetic mono- and oligomeric RGD-based peptides and peptidomimetics to integrins alphavbeta3 and alphavbeta5, after having confirmed correct orientation and functionality of membrane-embedded integrins. We evaluated integrin binding of RGD multimers linked together via aminohexanoic acid (Ahx) spacers and showed that the dimer revealed higher binding activity than the tetramer, followed by the RGD monomers. The peptidomimetic was also found to be highly active with a slightly higher selectivity toward alphavbeta3. The different compounds were also evaluated in in vitro cell adhesion tests for their capacity to interfere with alphavbeta3-mediated cell attachment to vitronectin. We hereby demonstrated that the different RGD monomers were similarly effective; the RGD dimer and tetramer showed comparable IC50 values, which were, however, significantly higher than those of the monomers. Best cell detachment from vitronectin was achieved by the peptidomimetic. The novel SPFS-binding assay platform proves to be a suitable, reliable, and sensitive method to monitor the binding capacity of small ligands to native transmembrane receptors, here demonstrated for integrins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper discusses the idea and demonstrates an early prototype of a novel method of interacting with security surveillance footage using natural user interfaces in place of traditional mouse and keyboard interaction. Current surveillance monitoring stations and systems provide the user with a vast array of video feeds from multiple locations on a video wall, relying on the user’s ability to distinguish locations of the live feeds from experience or list based key-value pair of location and camera IDs. During an incident, this current method of interaction may cause the user to spend increased amounts time obtaining situational and location awareness, which is counter-productive. The system proposed in this paper demonstrates how a multi-touch screen and natural interaction can enable the surveillance monitoring station users to quickly identify the location of a security camera and efficiently respond to an incident.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

RATIONALE: Polymer-based surface coatings in outdoor applications experience accelerated degradation due to exposure to solar radiation, oxygen and atmospheric pollutants. These deleterious agents cause undesirable changes to the aesthetic and mechanical properties of the polymer, reducing its lifetime. The use of antioxidants such as hindered amine light stabilisers (HALS) retards these degradative processes; however, mechanisms for HALS action and polymer degradation are poorly understood. METHODS: Detection of the HALS TINUVINW123 (bis(1-octyloxy-2,2,6,6-tetramethyl-4-piperidyl) sebacate) and the polymer degradation products directly from a polyester-based coil coating was achieved by liquid extraction surface analysis (LESA) coupled to a triple quadrupole QTRAPW 5500 mass spectrometer. The detection of TINUVINW123 and melamine was confirmed by the characteristic fragmentation pattern observed in LESA-MS/MS spectra that was identical to that reported for authentic samples. RESULTS: Analysis of an unstabilised coil coating by LESA-MS after exposure to 4 years of outdoor field testing revealed the presence of melamine (1,3,5-triazine-2,4,6-triamine) as a polymer degradation product at elevated levels. Changes to the physical appearance of the coil coating, including powder-like deposits on the coating's surface, were observed to coincide with melamine deposits and are indicative of the phenomenon known as polymer ' blooming'. CONCLUSIONS: For the first time, in situ detection of analytes from a thermoset polymer coating was accomplished without any sample preparation, providing advantages over traditional extraction-analysis approaches and some contemporary ambient MS methods. Detection of HALS and polymer degradation products such as melamine provides insight into the mechanisms by which degradation occurs and suggests LESA-MS is a powerful new tool for polymer analysis. Copyright (C) 2012 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A physical and numerical steady flow impinging jet has been used to simulate the bulk characteristics of a downburst-like wind field. The influence of downdraft tilt and surface roughness on the ensuing wall jet flow has been investigated. It was found that a simulated downdraft impinging the surface at a non-normal angle has the potential for causing larger structural loads than the normal impingement case. It was also found that for the current impinging jet simulations, surface roughness played a minor role in determining the storm maximum wind structure, but this influence increased as the wall jet diverged. However, through comparison with previous research it was found that the influence of surface roughness is Reynolds number dependent and therefore may differ from that reported herein for full-scale downburst cases. Using the current experimental results an empirical model has been developed for laboratory-scale impinging jet velocity structure that includes the influence of both jet tilt and surface roughness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Anatase TiO2 nanocrystals were painted on H-titanate nanofibers by using an aqueous solution of titanyl sulfate. The anatase nanocrystals were bonded solidly onto the titanate fibers through formation of coherent interfaces at which the oxygen atoms were shared by the nanocrystals and the fiber. This approach allowed us to create large anatase surfaces on the nanofibers, which are active in photocatalytic reactions. This method was also applied successfully to coat anatase nanocrystals on surfaces of fly ash and layered clay. The painted nanofibers exhibited a much higher catalytic activity for the photocatalytic degradation of sulforhodamine B and the selective oxidation of benzylamine to the corresponding imine (with a product selectivity >99%) under UV irradiation than both the parent H-titanate nanofibers and a commercial TiO2 powder, P25. We found that gold nanoparticles supported on H-titanate nanofibers showed no catalytic activity for the reduction of nitrobenzene to azoxybenzene, whereas the gold nanoparticles supported on the painted nanofibers and P25 could efficiently reduce nitrobenzene to azoxybenzene as the sole product under visible light irradiation. These results were different from those from the reduction on the gold nanoparticles photocatalyst on ZrO2, in which the azoxybenzene was the intermediate and converted to azobenzene quickly. Evidently, the support materials significantly affect the product selectivity of the nitrobenzene reduction. Finally, the new photocatalysts could be easily dispersed into and separated from a liquid because of their fibril morphology, which is an important advantage for practical applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show that it is possible to detect specifically adsorbed bacteriophage directly by breaking the interactions between proteins displayed on the phage coat and ligands immobilized on the surface of a quartz crystal microbalance (QCM). This is achieved through increasing the amplitude of oscillation of the QCM surface and sensitively detecting the acoustic emission produced when the bacteriophage detaches from the surface. There is no interference from nonspecifically adsorbed phage. The detection is quantitative over at least 5 orders of magnitude and is sensitive enough to detect as few as 20 phage. The method has potential as a sensitive and low-cost method for virus detection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper considers the manoeuvring of underactuated surface vessels. The control objective is to steer the vessel to reach a manifold which encloses a waypoint. A transformation of configuration variables and a potential field are used in a Port-Hamiltonian framework to design an energy-based controller. With the proposed controller, the geometric task associated with the manoeuvring problem depends on the desired potential energy (closed-loop) and the dynamic task depends on the total energy and damping. Therefore, guidance and motion control are addressed jointly, leading to model-energy-based trajectory generation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a nonlinear observer for estimating parameters associated with the restoring term of a roll motion model of a marine vessel in longitudinal waves. Changes in restoring, also referred to as transverse stability, can be the result of changes in the vessel's centre of gravity due to, for example, water on deck and also in changes in the buoyancy triggered by variations in the water-plane area produced by longitudinal waves -- propagating along the fore-aft direction along the hull. These variations in the restoring can change dramatically the dynamics of the roll motion leading to dangerous resonance. Therefore, it is of interest to estimate and detect such changes.