324 resultados para ORGANIC NANOPARTICLES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biomolecules are chemical compounds found in living organisms which are the building blocks of life and perform important functions. Fluctuation from the normal concentration of these biomolecules in living system leads to several disorders. Thus the exact determination of them in human fluids is essential in the clinical point of view. High performance liquid chromatography, flow injection analysis, capillary electrophoresis, fluorimetry, spectrophotometry, electrochemical and chemiluminescence techniques were usually used for the determination of biologically important molecules. Among these techniques, electrochemical determination of biomolecules has several advantages over other methods viz., simplicity, selectivity and sensitivity. In the past two decades, electrodes modified with polymer films, self-assembled monolayers containing different functional groups and carbon paste have been used as electrochemical sensors. But in recent years, nanomaterials based electrochemical sensors play an important role in the improvement of public health because of its rapid detection, high sensitivity and specificity in clinical diagnostics. To date gold nanoparticles (AuNPs) have received arousing attention mainly due to their fascinating electronic and optical properties as a consequence of their reduced dimensions. These unique properties of AuNPs make them as an ideal candidate for the immobilization of enzymes for biosensing. Further, the electrochemical properties of AuNPs reveal that they exhibit interesting properties by enhancing the electrode conductivity, facilitating electron transfer and improving the detection limit of biomolecules. In this chapter, we summarized the different strategies used for the attachment of AuNPs on electrode surfaces and highlighted the electrochemical determination of glucose, ascorbic acid (AA), uric acid (UA) and dopamine derivatives using the AuNPs modified electrodes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes the electrocatalytic oxidation of ascorbic acid (AA) in phosphate buffer solution by the immobilized citrate capped gold nanoparticles (AuNPs) on 1,6-hexanedithiol (HDT) modified Au electrode. X-ray photoelectron spectrum (XPS) of HDT suggests that it forms a monolayer on Au surface through one of the two single bondSH groups and the other single bondSH group is pointing away from the electrode surface. The free single bondSH groups of HDT were used to covalently attach colloidal AuNPs. The covalent attachment of AuNPs on HDT monolayer was confirmed from the observed characteristic carboxylate ion stretching modes of citrate attached with AuNPs in the infra-red reflection absorption spectrum (IRRAS) in addition to a higher reductive desorption charges obtained for AuNPs immobilized on HDT modified Au (Au/HDT/AuNPs) electrode in 0.1 M KOH when compared to HDT modified Au (Au/HDT) electrode. The electron transfer reaction of [Fe(CN)6]4−/3− was markedly hindered at the HDT modified Au (Au/HDT) electrode while it was restored with a peak separation of 74 mV after the immobilization of AuNPs on Au/HDT (Au/HDT/AuNPs) electrode indicating a good electronic communication between the immobilized AuNPs and the underlying bulk Au electrode through a HDT monolayer. The Cottrell slope obtained from the potential-step chronoamperometric measurements for the reduction of ferricyanide at Au/HDT/AuNPs was higher than that of bare Au electrode indicating the increased effective surface area of AuNPs modified electrode. The Au/HDT/AuNPs electrode exhibits excellent electrocatalytic activity towards the oxidation of ascorbic acid (AA) by enhancing the oxidation peak current to more than two times with a 210 mV negative shift in the oxidation potential when compared to a bare Au electrode. The standard heterogeneous electron transfer rate constant (ks) calculated for AA oxidation at Au/HDT/AuNPs electrode was 5.4 × 10−3 cm s−1. The oxidation peak of AA at Au/HDT/AuNPs electrode was highly stable upon repeated potential cycling. Linear calibration plot was obtained for AA over the concentration range of 1–110 μM with a correlation coefficient of 0.9950. The detection limit of AA was found to be 1 μM. The common physiological interferents such as glucose, oxalate ions and urea do not show any interference within the detection limit of AA. The selectivity of the AuNPs modified electrode was illustrated by the determination of AA in the presence of uric acid.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diatomite, a porous non-metal mineral, was used as support to prepare TiO2/diatomite composites by a modified sol–gel method. The as-prepared composites were calcined at temperatures ranging from 450 to 950 _C. The characterization tests included X-ray powder diffraction (XRD), scanning electron microscopy (SEM) with an energy-dispersive X-ray spectrometer (EDS), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), and nitrogen adsorption/desorption measurements. The XRD analysis indicated that the binary mixtures of anatase and rutile exist in the composites. The morphology analysis confirmed the TiO2 particles were uniformly immobilized on the surface of diatom with a strong interfacial anchoring strength, which leads to few drain of photocatalytic components during practical applications. In further XPS studies of hybrid catalyst, we found the evidence of the presence of Ti–O–Si bond and increased percentage of surface hydroxyl. In addition, the adsorption capacity and photocatalytic activity of synthesized TiO2/diatomite composites were evaluated by studying the degradation kinetics of aqueous Rhodamine B under UV-light irradiation. The photocatalytic degradation was found to follow pseudo-first order kinetics according to the Langmuir–Hinshelwood model. The preferable removal efficiency was observed in composites by 750 _C calcination, which is attributed to a relatively appropriate anatase/rutile mixing ratio of 90/10.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Australian national biomonitoring for persistent organic pollutants (POPs) relies upon age-specific pooled serum samples to characterize central tendencies of concentrations but does not provide estimates of upper bound concentrations. This analysis compares population variation from biomonitoring datasets from the US, Canada, Germany, Spain, and Belgium to identify and test patterns potentially useful for estimating population upper bound reference values for the Australian population. Methods Arithmetic means and the ratio of the 95th percentile to the arithmetic mean (P95:mean) were assessed by survey for defined age subgroups for three polychlorinated biphenyls (PCBs 138, 153, and 180), hexachlorobenzene (HCB), p,p-dichlorodiphenyldichloroethylene (DDE), 2,2′,4,4′ tetrabrominated diphenylether (PBDE 47), perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS). Results Arithmetic mean concentrations of each analyte varied widely across surveys and age groups. However, P95:mean ratios differed to a limited extent, with no systematic variation across ages. The average P95:mean ratios were 2.2 for the three PCBs and HCB; 3.0 for DDE; 2.0 and 2.3 for PFOA and PFOS, respectively. The P95:mean ratio for PBDE 47 was more variable among age groups, ranging from 2.7 to 4.8. The average P95:mean ratios accurately estimated age group-specific P95s in the Flemish Environmental Health Survey II and were used to estimate the P95s for the Australian population by age group from the pooled biomonitoring data. Conclusions Similar population variation patterns for POPs were observed across multiple surveys, even when absolute concentrations differed widely. These patterns can be used to estimate population upper bounds when only pooled sampling data are available.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

π-Conjugated polymers are the most promising semiconductor materials to enable printed organic thin film transistors (OTFTs) due to their excellent solution processability and mechanical robustness. However, solution-processed polymer semiconductors have shown poor charge transport properties mainly originated from the disordered polymer chain packing in the solid state as compared to the thermally evaporated small molecular organic semiconductors. The low charge carrier mobility, typically < 0.1 cm2 /V.s, of polymer semiconductors poses a challenge for most intended applications such as displays and radio-frequency identification (RFID) tags. Here we present our recent results on the dike topyrrolopyrrole (DPP)-based polymers and demonstrate that when DPP is combined with appropriate electron donating moieties such as thiophene and thienothiophene, very high charge carrier mobility values of ~1 cm2/V.s could be achieved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel solution-processable non-fullerene electron acceptor 6,6′-(5,5′-(9,9-dioctyl-9H-fluorene-2,7-diyl)bis(thiophene-5,2-diyl))bis(2,5-bis(2-ethylhexyl)-3-(thiophen-2-yl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione) (DPP1) based on fluorene and diketopyrrolopyrrole conjugated moieties was designed, synthesized and fully characterized. DPP1 exhibited excellent solubility and high thermal stability which are essential for easy processing. Upon using DPP1 as an acceptor with the classical electron donor poly(3-hexylthiophene), solution processable bulk-heterojunction solar cells afforded a power conversion efficiency of 1.2% with a high open-circuit voltage (1.1 V). As per our knowledge, this value of open circuit voltage is one of the highest values reported so far for a bulk-heterojunction device using DPP1 as a non-fullerene acceptor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The MOCVD assisted formation of nested WS2 inorganic fullerenes (IF-WS2) was performed by enhancing surface diffusion with iodine, and fullerene growth was monitored by taking TEM snapshots of intermediate products. The internal structure of the core-shell nanoparticles was studied using scanning electron microscopy (SEM) after cross-cutting with a focused ion beam (FIB). Lamellar reaction intermediates were found occluded in the fullerene particles. In contrast to carbon fullerenes, layered metal chalcogenides prefer the formation of planar, plate-like structures where the dangling bonds at the edges are stabilized by excess S atoms. The effects of the reaction and annealing temperatures on the composition and morphology of the final product were investigated, and the strength of the WS2 shell was measured by intermittent contact-mode AFM. The encapsulated lamellar structures inside the hollow spheres may lead to enhanced tribological activities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis investigated the interaction between light and gold nanoparticles, for gold nanoparticles sitting on a variety of surfaces. The work was both experimental and theoretical in nature. Using a custom designed experimental set-up we were able to probe the interaction of light with individual nanoparticles. We were also able to predict the interaction of light with gold nanoparticles sitting on graphene substrates. The work presented lays the groundwork for more extensive investigation of surfaces enhanced by the addition of gold nanoparticles.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel, uncomplicated and rapid method of analysis for organophosphorus (OP) pesticides was researched and developed using the important, common OP, dipterex, as a typical example. The basis of the method involved the citrate-capped silver nanoparticles (citrate-capped AgNPs) and Acetylthiocholine (ATCh). The latter compound can be catalyzed by Acetylcholinesterase (AChE) to form thiocholine (TCh), which induces the aggregation of AgNPs. Correspondingly, the color of AgNPs in solution changes from bright yellow to pink, and the UV–vis characteristic absorption peak of AgNPs at about 400 nm decreases; simultaneously, a new absorption band appears at about 520 nm. Irreversible inhibition of AChE activity caused by dipterex, prevents the aggregation of AgNPs. Thus, a UV–vis spectrophotometric method was developed for the analysis of dipterex. The absorbance ratio A396 nm/A520 nm was found to be linearly related to the concentration of dipterex in the range of 0.25–37.5 ng mL−1 with a detection limit of 0.18 ng mL−1. This method was used successfully to analyse dipterex in spiked, different water samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phenols are well known noxious compounds, which are often found in various water sources. A novel analytical method has been researched and developed based on the properties of hemin–graphene hybrid nanosheets (H–GNs). These nanosheets were synthesized using a wet-chemical method, and they have peroxidase-like activity. Also, in the presence of H2O2, the nanosheets are efficient catalysts for the oxidation of the substrate, 4-aminoantipine (4-AP), and the phenols. The products of such an oxidation reaction are the colored quinone-imines (benzodiazepines). Importantly, these products enabled the differentiation of the three common phenols – pyrocatechol, resorcin and hydroquinone, with the use of a novel, spectroscopic method, which was developed for the simultaneous determination of the above three analytes. This spectroscopic method produced linear calibrations for the pyrocatechol (0.4–4.0 mg L−1), resorcin (0.2–2.0 mg L−1) and hydroquinone (0.8–8.0 mg L−1) analytes. In addition, kinetic and spectral data, obtained from the formation of the colored benzodiazepines, were used to establish multi-variate calibrations for the prediction of the three phenol analytes found in various kinds of water; partial least squares (PLS), principal component regression (PCR) and artificial neural network (ANN) models were used and the PLS model performed best.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Knowledge management (KM) strategy is the planned or actual coordination of a firm's major goals and learning in time; this coordination continually co-aligns the firm's knowledge-based resources with the environment. Based on the organic perspective of strategy, a KM performance evaluation approach should be able to 1) review the knowledge governance mechanisms and learning routines that underpin the KM strategy, as well as the performance outcomes driven by the strategy, and 2) predict the evolution of performance drivers and outcomes into the future to facilitate strategic planning. This study combined a survey study and a system dynamics (SD) simulation to demonstrate the transformation from a mechanistic to an organic perspective on KM strategy and performance evaluation. The survey study was conducted based on a sample of 143 construction contractors and used structural equation modeling (SEM) techniques to develop a KM performance index for reviewing the key elements that underpin KM strategy. The SD simulation predicted the development of KM strategy configurations and the evolution of KM performance over time. The organic KM performance evaluation approach demonstrated by this study has significant potential to improve the alignment of KM strategy within an increasingly dynamic business environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Particulates with specific sizes and characteristics can induce potent immune responses by promoting antigen uptake of appropriate immuno-stimulatory cell types. Magnetite (Fe3O4) nanoparticles have shown many potential bioapplications due to their biocompatibility and special characteristics. Here, superparamagnetic Fe3O4 nanoparticles (SPIONs) with high magnetization value (70emug-1) were stabilized with trisodium citrate and successfully conjugated with a model antigen (ovalbumin, OVA) via N,N'-carbonyldiimidazole (CDI) mediated reaction, to achieve a maximum conjugation capacity at approximately 13μgμm-2. It was shown that different mechanisms governed the interactions between the OVA molecules and magnetite nanoparticles at different pH conditions. We evaluated as-synthesized SPION against commercially available magnetite nanoparticles. The cytotoxicity of these nanoparticles was investigated using mammalian cells. The reported CDI-mediated reaction can be considered as a potential approach in conjugating biomolecules onto magnetite or other biodegradable nanoparticles for vaccine delivery.