388 resultados para MAJOR SOURCE
Resumo:
Understanding the link between tectonic-driven extensional faulting and volcanism is crucial from a hazard perspective in active volcanic environments, while ancient volcanic successions provide records on how volcanic eruption styles, compositions, magnitudes and frequencies can change in response to extension timing, distribution and intensity. Significantly, incorrect tectonic interpretations can be made when the spatial-temporal-compositional trends of, and source contributions to magmatism are not properly considered. This study draws on intimate relationships of volcanism and extension preserved in the Sierra Madre Occidental (SMO) and Gulf of California (GoC) regions of western Mexico. Here, a major Oligocene rhyolitic ignimbrite “flare-up” (>300,000 km3) switched to a dominantly bimodal and mixed effusive-explosive volcanic phase in the Early Miocene (~100,000 km3), associated with distributed extension and opening of numerous grabens. Rhyolitic dome fields were emplaced along graben edges and at intersections of cross-graben and graben-parallel structures during early stages of graben development. Concomitant with this change in rhyolite eruption style was a change in crustal source as revealed by zircon chronochemistry with rapid rates of rhyolite magma generation due to remelting of mid- to upper crustal, highly differentiated igneous rocks emplaced during earlier SMO magmatism. Extension became more focused ~18 Ma resulting in volcanic activity being localised along the site of GoC opening. This localised volcanism (known as the Comondú “arc”) was dominantly effusive and andesite-dacite in composition. This compositional change resulted from increased mixing of basaltic and rhyolitic magmas rather than fluid flux melting of the mantle wedge above the subducting Guadalupe Plate. A poor understanding of space-time relationships of volcanism and extension has thus led to incorrect past tectonic interpretations of Comondú-age volcanism.
Resumo:
The composition of the lithosphere can be fundamentally altered by long-lived subduction processes such that subduction-modified lithosphere can survive for 100's Myrs. Incorrect petrotectonic interpretations result when spatial-temporal-compositional trends of, and source contributions to, magmatism are not properly considered. Western Mexico has had protracted Cenozoic magmatism developed mostly in-board of active oceanic plate subduction beneath western North America. A broad range of igneous compositions from basalt to high-silica rhyolite were erupted with intermediate to silicic compositions in particular, showing calc-alkaline and other typical subduction-related geochemical signatures. A major Oligocene rhyolitic ignimbrite “flare-up” (>300,000 km3) switched to a bimodal volcanic phase in the Early Miocene (~100,000 km3), associated with distributed extension and opening of numerous grabens. Extension became more focussed ~18 Ma resulting in localised volcanic activity along the future site of the Gulf of California. This localised volcanism (known as the Comondú “arc”) was dominantly effusive and andesite-dacite in composition. Past tectonic interpretations of Comondú-age volcanism may have been incorrect as these regional temporal-compositional changes are alternatively interpreted as a result of increased mixing of mantle-derived basaltic and crust-derived rhyolitic magmas in an active rift environment rather than fluid flux melting of the mantle wedge above the subducting Guadalupe Plate.
Resumo:
Large Igneous Provinces are exceptional intraplate igneous events throughout Earth’s history. Their significance and potential global impact is related to the total volume of magma intruded and released during these geologically brief events (peak eruptions are often within 1-5 Myrs duration) where millions to tens of millions of cubic kilometers of magma are produced. In some cases, at least 1% of the Earth’s surface has been directly covered in volcanic rock, being equivalent to the size of small continents with comparable crustal thicknesses. Large Igneous Provinces are thus important, albeit episodic episodes of new crust addition. However, most magmatism is basaltic so that contributions to crustal growth will not always be picked up in zircon geochronology studies that better trace major episodes of extension-related silicic magmatism and the silicic Large Igneous Provinces. Much headway has been made on our understanding of these anomalous igneous events over the last 25 years, driving many new ideas and models. This includes their: 1) global spatial and temporal distribution, with a long-term average of one event approximately every 20 Myrs, but a clear clustering of events at times of supercontinent break-up – Large Igneous Provinces are thus an integral part of the Wilson cycle and are becoming an increasingly important tool in reconnecting dispersed continental fragments; 2) compositional diversity that in part reflects their crustal setting of ocean basins, and continental interiors and margins where in the latter setting, LIP magmatism can be silicicdominant; 3) mineral and energy resources with major PGE and precious metal resources being hosted in these provinces, as well as magmatism impacting on the hydrocarbon potential of volcanic basins and rifted margins through enhancing source rock maturation, providing fluid migration pathways, and trap formation; 4) biospheric, hydrospheric and atmospheric impacts, with Large Igneous Provinces now widely regarded as a key trigger mechanism for mass extinctions, although the exact kill mechanism(s) are still being resolved; 5) role in mantle geodynamics and thermal evolution of the Earth, by potentially recording the transport of material from the lower mantle or core-mantle boundary to the Earth's surface and being a fundamental component in whole mantle convection models; and 6) recognition on the inner planets where the lack of plate tectonics and erosional processes and planetary antiquity means that the very earliest record of LIP events during planetary evolution may be better preserved than on Earth.
Resumo:
A review is provided of major contributions in social and environmental accounting literature focusing on the issues of developing countries. The review of prior research shows that the major contributions have been related to the motivations for social and environmental disclosure. However, other important research areas such as ethical/accountability issues and how to cost externalities which have already been considered within the developing country context. Contemporary social and environmental issues such as climate change and greenhouse gas emissions affecting the global community also appear to be key issues of research to scholars in both developed and developing countries. Finally, some future research directions are identified.
Resumo:
The Beauty Leaf tree (Calophyllum inophyllum) is a potential source of non-edible vegetable oil for producing future generation biodiesel because of its ability to grow in a wide range of climate conditions, easy cultivation, high fruit production rate, and the high oil content in the seed. This plant naturally occurs in the coastal areas of Queensland and the Northern Territory in Australia, and is also widespread in south-east Asia, India and Sri Lanka. Although Beauty Leaf is traditionally used as a source of timber and orientation plant, its potential as a source of second generation biodiesel is yet to be exploited. In this study, the extraction process from the Beauty Leaf oil seed has been optimised in terms of seed preparation, moisture content and oil extraction methods. The two methods that have been considered to extract oil from the seed kernel are mechanical oil extraction using an electric powered screw press, and chemical oil extraction using n-hexane as an oil solvent. The study found that seed preparation has a significant impact on oil yields, especially in the screw press extraction method. Kernels prepared to 15% moisture content provided the highest oil yields for both extraction methods. Mechanical extraction using the screw press can produce oil from correctly prepared product at a low cost, however overall this method is ineffective with relatively low oil yields. Chemical extraction was found to be a very effective method for oil extraction for its consistence performance and high oil yield, but cost of production was relatively higher due to the high cost of solvent. However, a solvent recycle system can be implemented to reduce the production cost of Beauty Leaf biodiesel. The findings of this study are expected to serve as the basis from which industrial scale biodiesel production from Beauty Leaf can be made.
Resumo:
Motorway off-ramps are a significant source of traffic congestion and collisions. Heavy diverging traffic to off-ramps slows down the mainline traffic speed. When the off-ramp queue spillbacks onto the mainline, it leads to a major breakdown of the motorway capacity and a significant threat to the traffic safety. This paper proposes using Variable Speed Limits (VSL) for protection of the motorway off-ramp queue and thus to promote safety in congested diverging areas. To support timely activation of VSL in advance of queue spillover, a proactive control strategy is proposed based on a real-time off-ramp queue estimation and prediction. This process determines the estimated queue size in the near-term future, on which the decision to change speed limits is made. VSL can effectively slow down traffic as it is mandatory that drivers follow the changed speed limits. A collateral benefit of VSL is its potential effect on drivers making them more attentive to the surrounding traffic conditions, and prepared for a sudden braking of the leading car. This paper analyses and quantifies these impacts and potential benefits of VSL on traffic safety and efficiency using the microsimulation approach.
Resumo:
The Lockyer Valley is situated 80 km west of Brisbane and is bounded on the sou th and west by the Great Dividing Range. The valley is a major western sub - catchment of the larger Brisbane River drainage system and is drained by the Lockyer Creek. The Lockyer catchment forms approximately 20% of the total Brisbane River catchment and has an area of around 2900 km2. The Lockyer Creek is an ephemeral drainage system, and the stream and associated alluvium are the main source for irrigation water supply in the Lockyer Valley. The catchment is comprised of a number of well -defined, elongate tributaries in the south, and others in the north, which are more meandering in nature.
Resumo:
Long term exposure to vehicle emissions has been associated with harmful health effects. Children are amongst the most susceptible group and schools represent an environment where they can experience significant exposure to vehicle emissions. However, there are limited studies on children’s exposure to vehicle emissions in schools. The aim of this study was to quantify the concentration of organic aerosol and in particular, vehicle emissions that children are exposed to during school hours. Therefore an Aerodyne compact time-of-flight aerosol mass spectrometer (TOF-AMS) was deployed at five urban schools in Brisbane, Australia. The TOF-AMS enabled the chemical composition of the non- refractory (NR-PM1) to be analysed with a high temporal resolution to assess the concentration of vehicle emissions and other organic aerosols during school hours. At each school the organic fraction comprised the majority of NR-PM1 with secondary organic aerosols as the main constitute. At two of the schools, a significant source of the organic aerosol (OA) was slightly aged vehicle emissions from nearby highways. More aged and oxidised OA was observed at the other three schools, which also recorded strong biomass burning influences. Primary emissions were found to dominate the OA at only one school which had an O:C ratio of 0.17, due to fuel powered gardening equipment used near the TOF-AMS. The diurnal cycle of OA concentration varied between schools and was found to be at a minimum during school hours. The major organic component that school children were exposed to during school hours was secondary OA. Peak exposure of school children to HOA occurred during school drop off and pick up times. Unless a school is located near major roads, children are exposed predominately to regional secondary OA as opposed to local emissions during schools hours in urban environments.
Resumo:
This report discusses the geologic framework and petroleum geology used to assess undiscovered petroleum resources in the Bohaiwan basin province for the 2000 World Energy Assessment Project of the U.S. Geological Survey. The Bohaiwan basin in northeastern China is the largest petroleum-producing region in China. Two total petroleum systems have been identified in the basin. The first, the Shahejie–Shahejie/Guantao/Wumishan Total Petroleum System, involves oil and gas generated from mature pods of lacustrine source rock that are associated with six major rift-controlled subbasins. Two assessment units are defined in this total petroleum system: (1) a Tertiary lacustrine assessment unit consisting of sandstone reservoirs interbedded with lacustrine shale source rocks, and (2) a pre-Tertiary buried hills assessment unit consisting of carbonate reservoirs that are overlain unconformably by Tertiary lacustrine shale source rocks. The second total petroleum system identified in the Bohaiwan basin is the Carboniferous/Permian Coal–Paleozoic Total Petroleum System, a hypothetical total petroleum system involving natural gas generated from multiple pods of thermally mature coal beds. Low-permeability Permian sandstones and possibly Carboniferous coal beds are the reservoir rocks. Most of the natural gas is inferred to be trapped in continuous accumulations near the center of the subbasins. This total petroleum system is largely unexplored and has good potential for undiscovered gas accumulations. One assessment unit, coal-sourced gas, is defined in this total petroleum system.
Resumo:
The dermo-epidermal interface that connects the equine distal phalanx to the cornified hoof wall withstands great biomechanical demands, but is also a region where structural failure often ensues as a result of laminitis. The cytoskeleton in this region maintains cell structure and facilitates intercellular adhesion, making it likely to be involved in laminitis pathogenesis, although it is poorly characterized in the equine hoof lamellae. The objective of the present study was to identify and quantify the cytoskeletal proteins present in the epidermal and dermal lamellae of the equine hoof by proteomic techniques. Protein was extracted from the mid-dorsal epidermal and dermal lamellae from the front feet of 5 Standardbred geldings and 1 Thoroughbred stallion. Mass spectrometry-based spectral counting techniques, PAGE, and immunoblotting were used to identify and quantify cytoskeletal proteins, and indirect immunofluorescence was used for cellular localization of K14 and K124 (where K refers to keratin). Proteins identified by spectral counting analysis included 3 actin microfilament proteins; 30 keratin proteins along with vimentin, desmin, peripherin, internexin, and 2 lamin intermediate filament proteins; and 6 tubulin microtubule proteins. Two novel keratins, K42 and K124, were identified as the most abundant cytoskeletal proteins (22.0 ± 3.2% and 23.3 ± 4.2% of cytoskeletal proteins, respectively) in equine hoof lamellae. Immunoreactivity to K14 was localized to the basal cell layer, and that to K124 was localized to basal and suprabasal cells in the secondary epidermal lamellae. Abundant proteins K124, K42, K14, K5, and α1-actin were identified on 1- and 2-dimensional polyacrylamide gels and aligned with the results of previous studies. Results of the present study provide the first comprehensive analysis of cytoskeletal proteins present in the equine lamellae by using mass spectrometry-based techniques for protein quantification and identification.
Resumo:
Post–disaster reconstruction projects are often considered ineffectual or unproductive because on many occasions in the past they have performed extremely poorly during post-contract occupation, or have failed altogether to deliver acceptable outcomes. In some cases, these projects have already failed even before their completion, leading many sponsor aid organisations to hold these projects up as examples of how not to deliver housing reconstruction. Research into some previous unsuccessful projects has revealed that often the lack of adequate knowledge regarding the context and complexity involved in the implementation of these projects is generally responsible for their failure. Post-disaster reconstruction projects are certainly very complex in nature, often very context-specific and they can vary widely in magnitude. Despite such complexity, reconstruction projects can still have a high likelihood of success if adequate consideration is given to the importance of factors which are known to positively influence reconstruction efforts. Good outcomes can be achieved when planners and practitioners ensure best practices are embedded in the design of reconstruction projects at the time reconstruction projects they are first instigated. This paper outlines and discusses factors that significantly contribute to the successful delivery of post-disaster housing reconstruction projects.
Resumo:
As the world’s population is growing, so is the demand for agricultural products. However, natural nitrogen (N) fixation and phosphorus (P) availability cannot sustain the rising agricultural production, thus, the application of N and P fertilisers as additional nutrient sources is common. It is those anthropogenic activities that can contribute high amounts of organic and inorganic nutrients to both surface and groundwaters resulting in degradation of water quality and a possible reduction of aquatic life. In addition, runoff and sewage from urban and residential areas can contain high amounts of inorganic and organic nutrients which may also affect water quality. For example, blooms of the cyanobacterium Lyngbya majuscula along the coastline of southeast Queensland are an indicator of at least short term decreases of water quality. Although Australian catchments, including those with intensive forms of land use, show in general a low export of nutrients compared to North American and European catchments, certain land use practices may still have a detrimental effect on the coastal environment. Numerous studies are reported on nutrient cycling and associated processes on a catchment scale in the Northern Hemisphere. Comparable studies in Australia, in particular in subtropical regions are, however, limited and there is a paucity in the data, in particular for inorganic and organic forms of nitrogen and phosphorus; these nutrients are important limiting factors in surface waters to promote algal blooms. Therefore, the monitoring of N and P and understanding the sources and pathways of these nutrients within a catchment is important in coastal zone management. Although Australia is the driest continent, in subtropical regions such as southeast Queensland, rainfall patterns have a significant effect on runoff and thus the nutrient cycle at a catchment scale. Increasingly, these rainfall patterns are becoming variable. The monitoring of these climatic conditions and the hydrological response of agricultural catchments is therefore also important to reduce the anthropogenic effects on surface and groundwater quality. This study consists of an integrated hydrological–hydrochemical approach that assesses N and P in an environment with multiple land uses. The main aim is to determine the nutrient cycle within a representative coastal catchment in southeast Queensland, the Elimbah Creek catchment. In particular, the investigation confirms the influence associated with forestry and agriculture on N and P forms, sources, distribution and fate in the surface and groundwaters of this subtropical setting. In addition, the study determines whether N and P are subject to transport into the adjacent estuary and thus into the marine environment; also considered is the effect of local topography, soils and geology on N and P sources and distribution. The thesis is structured on four components individually reported. The first paper determines the controls of catchment settings and processes on stream water, riverbank sediment, and shallow groundwater N and P concentrations, in particular during the extended dry conditions that were encountered during the study. Temporal and spatial factors such as seasonal changes, soil character, land use and catchment morphology are considered as well as their effect on controls over distributions of N and P in surface waters and associated groundwater. A total number of 30 surface and 13 shallow groundwater sampling sites were established throughout the catchment to represent dominant soil types and the land use upstream of each sampling location. Sampling comprises five rounds and was conducted over one year between October 2008 and November 2009. Surface water and groundwater samples were analysed for all major dissolved inorganic forms of N and for total N. Phosphorus was determined in the form of dissolved reactive P (predominantly orthophosphate) and total P. In addition, extracts of stream bank sediments and soil grab samples were analysed for these N and P species. Findings show that major storm events, in particular after long periods of drought conditions, are the driving force of N cycling. This is expressed by higher inorganic N concentrations in the agricultural subcatchment compared to the forested subcatchment. Nitrate N is the dominant inorganic form of N in both the surface and groundwaters and values are significantly higher in the groundwaters. Concentrations in the surface water range from 0.03 to 0.34 mg N L..1; organic N concentrations are considerably higher (average range: 0.33 to 0.85 mg N L..1), in particular in the forested subcatchment. Average NO3-N in the groundwater has a range of 0.39 to 2.08 mg N L..1, and organic N averages between 0.07 and 0.3 mg N L..1. The stream bank sediments are dominated by organic N (range: 0.53 to 0.65 mg N L..1), and the dominant inorganic form of N is NH4-N with values ranging between 0.38 and 0.41 mg N L..1. Topography and soils, however, were not to have a significant effect on N and P concentrations in waters. Detectable phosphorus in the surface and groundwaters of the catchment is limited to several locations typically in the proximity of areas with intensive animal use; in soil and sediments, P is negligible. In the second paper, the stable isotopes of N (14N/15N) and H2O (16O/18O and 2H/H) in surface and groundwaters are used to identify sources of dissolved inorganic and organic N in these waters, and to determine their pathways within the catchment; specific emphasis is placed on the relation of forestry and agriculture. Forestry is predominantly concentrated in the northern subcatchment (Beerburrum Creek) while agriculture is mainly found in the southern subcatchment (Six Mile Creek). Results show that agriculture (horticulture, crops, grazing) is the main source of inorganic N in the surface waters of the agricultural subcatchment, and their isotopic signature shows a close link to evaporation processes that may occur during water storage in farm dams that are used for irrigation. Groundwaters are subject to denitrification processes that may result in reduced dissolved inorganic N concentrations. Soil organic matter delivers most of the inorganic N to the surface water in the forested subcatchment. Here, precipitation and subsequently runoff is the main source of the surface waters. Groundwater in this area is affected by agricultural processes. The findings also show that the catchment can attenuate the effects of anthropogenic land use on surface water quality. Riparian strips of natural remnant vegetation, commonly 50 to 100 m in width, act as buffer zones along the drainage lines in the catchment and remove inorganic N from the soil water before it enters the creek. These riparian buffer zones are common in most agricultural catchments of southeast Queensland and are indicated to reduce the impact of agriculture on stream water quality and subsequently on the estuary and marine environments. This reduction is expressed by a significant decrease in DIN concentrations from 1.6 mg N L..1 to 0.09 mg N L..1, and a decrease in the �15N signatures from upstream surface water locations downstream to the outlet of the agricultural subcatchment. Further testing is, however, necessary to confirm these processes. Most importantly, the amount of N that is transported to the adjacent estuary is shown to be negligible. The third and fourth components of the thesis use a hydrological catchment model approach to determine the water balance of the Elimbah Creek catchment. The model is then used to simulate the effects of land use on the water balance and nutrient loads of the study area. The tool that is used is the internationally widely applied Soil and Water Assessment Tool (SWAT). Knowledge about the water cycle of a catchment is imperative in nutrient studies as processes such as rainfall, surface runoff, soil infiltration and routing of water through the drainage system are the driving forces of the catchment nutrient cycle. Long-term information about discharge volumes of the creeks and rivers do, however, not exist for a number of agricultural catchments in southeast Queensland, and such information is necessary to calibrate and validate numerical models. Therefore, a two-step modelling approach was used to calibrate and validate parameters values from a near-by gauged reference catchment as starting values for the ungauged Elimbah Creek catchment. Transposing monthly calibrated and validated parameter values from the reference catchment to the ungauged catchment significantly improved model performance showing that the hydrological model of the catchment of interest is a strong predictor of the water water balance. The model efficiency coefficient EF shows that 94% of the simulated discharge matches the observed flow whereas only 54% of the observed streamflow was simulated by the SWAT model prior to using the validated values from the reference catchment. In addition, the hydrological model confirmed that total surface runoff contributes the majority of flow to the surface water in the catchment (65%). Only a small proportion of the water in the creek is contributed by total base-flow (35%). This finding supports the results of the stable isotopes 16O/18O and 2H/H, which show the main source of water in the creeks is either from local precipitation or irrigation waters delivered by surface runoff; a contribution from the groundwater (baseflow) to the creeks could not be identified using 16O/18O and 2H/H. In addition, the SWAT model calculated that around 68% of the rainfall occurring in the catchment is lost through evapotranspiration reflecting the prevailing long-term drought conditions that were observed prior and during the study. Stream discharge from the forested subcatchment was an order of magnitude lower than discharge from the agricultural Six Mile Creek subcatchment. A change in land use from forestry to agriculture did not significantly change the catchment water balance, however, nutrient loads increased considerably. Conversely, a simulated change from agriculture to forestry resulted in a significant decrease of nitrogen loads. The findings of the thesis and the approach used are shown to be of value to catchment water quality monitoring on a wider scale, in particular the implications of mixed land use on nutrient forms, distributions and concentrations. The study confirms that in the tropics and subtropics the water balance is affected by extended dry periods and seasonal rainfall with intensive storm events. In particular, the comprehensive data set of inorganic and organic N and P forms in the surface and groundwaters of this subtropical setting acquired during the one year sampling program may be used in similar catchment hydrological studies where these detailed information is missing. Also, the study concludes that riparian buffer zones along the catchment drainage system attenuate the transport of nitrogen from agricultural sources in the surface water. Concentrations of N decreased from upstream to downstream locations and were negligible at the outlet of the catchment.
Resumo:
Electronic word-of-mouth (eWOM) has gained significant attention from academics and practitioners since it has become an important source of consumers’ product information, which can influence consumer purchase intentions (Cheung & Lee, 2012). eWOM exchanges exist in two types of online communities: online communities of practice and online communities of interest. A few prior studies in online communities of interest have examined members’ motivations for product knowledge exchange (Hung & Li, 2007; Ma & Agarwal, 2007). However, there is a lack of understanding of member motivations for exchanging social bonds and enjoyment in addition to exchanging knowledge pertaining to products in the community. It is important to have an initial comprehension of motivation as an antecedent of these three eWOM exchanges so as to be able to determine the driving factors that lead members to generate eWOM communication. Thus, the research problem "What are the driving factors for members to exchange eWOM in an online community?" was justified for investigation. The purpose of this study was to examine different member motivations for exchanging three types of eWOM. Resource exchange theory and theory on consumer motivation and behavior were applied to develop a conceptual framework for this study. This study focused on an online beauty community since there is an increasing trend of consumers turning to online beauty resources so as to exchange useful beauty product information (SheSpot, 2011). As this study examined consumer motivation in an online beauty community, a web-based survey was the most effective and efficient way to gain responses from beauty community members and these members were appropriate samples from which to draw a conclusion about the whole population. Multiple regression analysis was used to test the relationships between member motivations and eWOM exchanges. It was found that members have different motivations for exchanging knowledge, social bonds, and enjoyment related to products: self-development, problem solving support, and relaxation, respectively. This study makes three theoretical contributions. First, this study identifies the influence of self-development motivation on knowledge exchange in an online community of interest, just as this motivation has previously been found in online communities of practice. This study highlights that members of the two different types of online communities share similar goals of knowledge exchange, despite the two communities evincing different attributes (e.g., member characteristics and tasks’ objectives). Further, this study will assist researchers to understand other motivations identified by prior research in online communities of practice since such motivations may be applicable to online communities of interest. Second, this study offers a new perspective on member motivation for social bonding. This study indicates that in addition to social support from friends and family, consumers are motivated to build social bonds with members in an online community of interest since they are an important source of problem solving support in regard to products. Finally, this study extends the body of knowledge pertaining to member motivation for enjoyment exchange. This study provides a basis for researchers to understand that members in an online community of interest value experiential aspects of enjoyable consumption activities, and thus based on group norms, members have a mutual desire for relaxation from enjoyment exchange. The major practical contribution is that this study provides an important guideline for marketing managers to develop different marketing strategies based on member motivations for exchanging three types of eWOM in an online community of interest, such as an online beauty community. This will potentially help marketing managers increase online traffic and revenue, and thus bring success to the community. Although, this study contributes to the literature by highlighting three distinctive member motivations for eWOM exchanges in an online community of interest, there are some possible research limitations. First, this study was conducted in an online beauty community in Australia. Hence, further research should replicate this study in other industries and nations so as to give the findings greater generalisability. Next, online beauty community members are female skewed. Thus, future research should examine whether similar patterns of motivations would emerge in other online communities that tend to be populated by males (e.g., communities focused on football). Further, a web-based survey has its limitations in terms of self-selection and self-reporting (Bhatnagar & Ghose, 2004). Therefore, further studies should test the framework by employing different research methods in order to overcome these weaknesses.
Resumo:
Particulate matter research is essential because of the well known significant adverse effects of aerosol particles on human health and the environment. In particular, identification of the origin or sources of particulate matter emissions is of paramount importance in assisting efforts to control and reduce air pollution in the atmosphere. This thesis aims to: identify the sources of particulate matter; compare pollution conditions at urban, rural and roadside receptor sites; combine information about the sources with meteorological conditions at the sites to locate the emission sources; compare sources based on particle size or mass; and ultimately, provide the basis for control and reduction in particulate matter concentrations in the atmosphere. To achieve these objectives, data was obtained from assorted local and international receptor sites over long sampling periods. The samples were analysed using Ion Beam Analysis and Scanning Mobility Particle Sizer methods to measure the particle mass with chemical composition and the particle size distribution, respectively. Advanced data analysis techniques were employed to derive information from large, complex data sets. Multi-Criteria Decision Making (MCDM), a ranking method, drew on data variability to examine the overall trends, and provided the rank ordering of the sites and years that sampling was conducted. Coupled with the receptor model Positive Matrix Factorisation (PMF), the pollution emission sources were identified and meaningful information pertinent to the prioritisation of control and reduction strategies was obtained. This thesis is presented in the thesis by publication format. It includes four refereed papers which together demonstrate a novel combination of data analysis techniques that enabled particulate matter sources to be identified and sampling site/year ranked. The strength of this source identification process was corroborated when the analysis procedure was expanded to encompass multiple receptor sites. Initially applied to identify the contributing sources at roadside and suburban sites in Brisbane, the technique was subsequently applied to three receptor sites (roadside, urban and rural) located in Hong Kong. The comparable results from these international and national sites over several sampling periods indicated similarities in source contributions between receptor site-types, irrespective of global location and suggested the need to apply these methods to air pollution investigations worldwide. Furthermore, an investigation into particle size distribution data was conducted to deduce the sources of aerosol emissions based on particle size and elemental composition. Considering the adverse effects on human health caused by small-sized particles, knowledge of particle size distribution and their elemental composition provides a different perspective on the pollution problem. This thesis clearly illustrates that the application of an innovative combination of advanced data interpretation methods to identify particulate matter sources and rank sampling sites/years provides the basis for the prioritisation of future air pollution control measures. Moreover, this study contributes significantly to knowledge based on chemical composition of airborne particulate matter in Brisbane, Australia and on the identity and plausible locations of the contributing sources. Such novel source apportionment and ranking procedures are ultimately applicable to environmental investigations worldwide.
Resumo:
In a recent paper, Gordon, Muratov, and Shvartsman studied a partial differential equation (PDE) model describing radially symmetric diffusion and degradation in two and three dimensions. They paid particular attention to the local accumulation time (LAT), also known in the literature as the mean action time, which is a spatially dependent timescale that can be used to provide an estimate of the time required for the transient solution to effectively reach steady state. They presented exact results for three-dimensional applications and gave approximate results for the two-dimensional analogue. Here we make two generalizations of Gordon, Muratov, and Shvartsman’s work: (i) we present an exact expression for the LAT in any dimension and (ii) we present an exact expression for the variance of the distribution. The variance provides useful information regarding the spread about the mean that is not captured by the LAT. We conclude by describing further extensions of the model that were not considered by Gordon,Muratov, and Shvartsman. We have found that exact expressions for the LAT can also be derived for these important extensions...