248 resultados para Knee Osteoarthritis


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction and Objectives Joint moments and joint powers during gait are widely used to determine the effects of rehabilitation programs as well as prosthetic fitting. Following the definition of power (dot product of joint moment and joint angular velocity) it has been previously proposed to analyse the 3D angle between both vectors, αMw. Basically, joint power is maximised when both vectors are parallel and cancelled when both vectors are orthogonal. In other words, αMw < 60° reveals a propulsion configuration (more than 50% of the moment contribute to positive power) while αMw > 120° reveals a resistance configuration (more than 50% of the moment contribute to negative power). A stabilisation configuration (less than 50% of the moment contribute to power) corresponds to 60° < αMw < 120°. Previous studies demonstrated that hip joints of able-bodied adults (AB) are mainly in a stabilisation configuration (αMw about 90°) during the stance phase of gait. [1, 2] Individuals with transfemoral amputation (TFA) need to maximise joint power at the hip while controlling the prosthetic knee during stance. Therefore, we tested the hypothesis that TFAs should adopt a strategy that is different from a continuous stabilisation. The objective of this study was to compute joint power and αMw for TFA and to compare them with AB. Methods Three trials of walking at self-selected speed were analysed for 8 TFAs (7 males and 1 female, 46±10 years old, 1.78±0.08 m 82±13 kg) and 8 ABs (males, 25±3 years old, 1.75±0.04, m 67±6 kg). The joint moments are computed from a motion analysis system (Qualisys, Goteborg, Sweden) and a multi-axial transducer (JR3, Woodland, USA) mounted above the prosthetic knee for TFAs and from a motion analysis system (Motion Analysis, Santa Rosa, USA) and force plates (Bertec, Columbus, USA) for ABs. The TFAs were fitted with an OPRA (Integrum, AB, Gothengurg, Sweden) osseointegrated implant system and their prosthetic designs include pneumatic, hydraulic and microprocessor knees. Previous studies showed that the inverse dynamics computed from the multi-axial transducer is the proper method considering the absorption at the foot and resistance at the knee. Results The peak of positive power at loading response (H1) was earlier and lower for TFA compared to AB. Although the joint power is lower, the 3D angle between joint moment and joint angular velocity, αMw, reveals an obvious propulsion configuration (mean αMw about 20°) for TFA compared to a stabilisation configuration (mean αMw about 70°) for AB. The peaks of negative power at midstance (H2) and of positive power at preswing / initial swing (H3) occurred later, lower and longer for TFA compared to AB. Again, the joint powers are lower for TFA but, in this case, αMw is almost comparable (with a time lag), demonstrating a stabilisation (almost a resistance for TFA, mean αMw about 120°) and a propulsion configuration, respectively. The swing phase is not analysed in the present study. Conclusion The analysis of hip joint power may indicate that TFAs demonstrated less propulsion and resistance than ABs during the stance phase of gait. This is true from a quantitative point of view. On the contrary, the 3D angle between joint moment and joint angular velocity, αMw, reveals that TFAs have a remarkable propulsion strategy at loading response and almost a resistance strategy at midstance while ABs adopted a stabilisation strategy. The propulsion configuration, with αMw close to 0°, seems to aim at maximising the positive joint power. The configuration close to resistance, with αMw far from 180°, might aim at unlocking the prosthetic knee before swing while minimising the negative power. This analysis of both joint power and 3D angle between the joint moment and the joint angular velocity provides complementary insights into the gait strategies of TFA that can be used to support evidence-based rehabilitation and fitting of prosthetic components.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It has been demonstrated that most cells of the body respond to osmotic pressure in a systematic manner. The disruption of the collagen network in the early stages of osteoarthritis causes an increase in water content of cartilage which leads to a reduction of pericellular osmolality in chondrocytes distributed within the extracellular environment. It is therefore arguable that an insight into the mechanical properties of chondrocytes under varying osmotic pressure would provide a better understanding of chondrocyte mechanotransduction and potentially contribute to knowledge on cartilage degeneration. In this present study, the chondrocyte cells were exposed to solutions with different osmolality. Changes in their dimensions and mechanical properties were measured over time. Atomic Force Microscopy (AFM) was used to apply load at various strain-rates and the force-time curves were logged. The thin-layer elastic model was used to extract the elastic stiffness of chondrocytes at different strain-rates and at different solution osmolality. In addition, the porohyperelastic (PHE) model was used to investigate the strain-rate dependent responses under the loading and osmotic pressure conditions. The results revealed that the hypo-osmotic external environment increased chondrocyte dimensions and reduced Young’s modulus of the cells at all strain-rates tested. In contrast, the hyper-osmotic external environment reduced dimensions and increased Young’s modulus. Moreover, by using the PHE model coupled with inverse FEA simulation, we established that the hydraulic permeability of chondrocytes increased with decreasing extracellular osmolality which is consistent with previous work in the literature. This could be due to a higher intracellular fluid volume fraction with lower osmolality.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background Investigating population changes gives insight into effectiveness and need for prevention and rehabilitation services. Incidence rates of amputation are highly varied, making it difficult to meaningfully compare rates between studies and regions or to compare changes over time. Study Design Historical cohort study of transtibial amputation, knee disarticulation, and transfemoral amputations resulting from vascular disease or infection, with/without diabetes, in 2003-2004, in the three Northern provinces of the Netherlands. Objectives To report the incidence of first transtibial amputation, knee disarticulation, or transfemoral amputation in 2003-2004 and the characteristics of this population, and to compare these outcomes to an earlier reported cohort from 1991 to 1992. Methods Population-based incidence rates were calculated per 100,000 person-years and compared across the two cohorts. Results Incidence of amputation was 8.8 (all age groups) and 23.6 (≥45 years) per 100,000 person-years. This was unchanged from the earlier study of 1991-1992. The relative risk of amputation was 12 times greater for people with diabetes than for people without diabetes. Conclusions Investigation is needed into reasons for the unchanged incidence with respect to the provision of services from a range of disciplines, including vascular surgery, diabetes care, and multidisciplinary foot clinics. Clinical relevance This study shows an unchanged incidence of amputation over time and a high risk of amputation related to diabetes. Given the increased prevalence of diabetes and population aging, both of which present an increase in the population at risk of amputation, finding methods for reducing the rate of amputation is of importance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mechanical stress is an important external factor effecting the development and maintenance of articular cartilage. The metabolite profile of diseased cartilage has been well studied but there is limited information about the variation in metabolite profile of healthy cartilage. With the importance of load in maintaining healthy cartilage, regional differences in metabolite profile associated with differences in load may provide information on how load contributes to the maintenance of healthy cartilage. HR-MAS NMR spectroscopy allows the assessment of tissue samples without modification and was used for assessing the difference in metabolic profile between the load bearing and non-load bearing regions of the bovine articular cartilage. In this preliminary study, we examined cartilage from tibia and femur of four knee joints. Sixteen pairs of 1D-NOESY spectra were acquired. Principle component analysis (PCA) identified chemical shifts responsible for variance. SBASE (AMIX) and the Human Metabolome Database were used in conjunction with previous reported cartilage data for identifying metabolites associated with the PCA results. The major contributors to load-related differences in metabolite profile were N-acetyl groups, lactate and phosphocholine peaks. Integrals of these regions were further analysed using a Student's t-test. In load bearing cartilage regions. N-acetyl groups and phosphocholine were found at significantly higher concentration (p < 0.05 and p < 0.005, respectively) in both femur and tibia, while lactate was reduced in load bearing cartilage (p < 0.005). The results of this pilot HR-MAS NMR study demonstrate its ability to provide useful metabolite information for healthy cartilage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Training for bodybuilding competition is clearly a serious business that inflicts serious demands on the competitor. Not only did Francis commit time and money to compete, but he also arguably put winning before his physical well-being—enduring pain and suffering from his injury. Bodybuilding may seem like an extreme example, but it is not the only activity in which people suffer in pursuit of their goals. Boxers fight each other in the ring; soccer players risk knee and ankle injuries, sometimes playing despite being hurt; and mountaineers risk their lives in dangerous climbs. In the arts there are many examples of people suffering to achieve their goals: Beethoven kept composing, conducting, and performing despite his hearing loss; van Gogh grappled with depression but kept painting, finding fame only posthumously; and Mozart lived the final years of his life impoverished but still composing. These examples show that many great achievements come at a price: severe suffering...

Relevância:

10.00% 10.00%

Publicador:

Resumo:

CONTEXT: The role and importance of circulating sclerostin is poorly understood. High bone mass (HBM) caused by activating LRP5 mutations has been reported to be associated with increased plasma sclerostin concentrations; whether the same applies to HBM due to other causes is unknown. OBJECTIVE: Our objective was to determine circulating sclerostin concentrations in HBM. DESIGN AND PARTICIPANTS: In this case-control study, 406 HBM index cases were identified by screening dual-energy x-ray absorptiometry (DXA) databases from 4 United Kingdom centers (n = 219 088), excluding significant osteoarthritis/artifact. Controls comprised unaffected relatives and spouses. MAIN MEASURES: Plasma sclerostin; lumbar spine L1, total hip, and total body DXA; and radial and tibial peripheral quantitative computed tomography (subgroup only) were evaluated. RESULTS: Sclerostin concentrations were significantly higher in both LRP5 HBM and non-LRP5 HBM cases compared with controls: mean (SD) 130.1 (61.7) and 88.0 (39.3) vs 66.4 (32.3) pmol/L (both P < .001, which persisted after adjustment for a priori confounders). In combined adjusted analyses of cases and controls, sclerostin concentrations were positively related to all bone parameters found to be increased in HBM cases (ie, L1, total hip, and total body DXA bone mineral density and radial/tibial cortical area, cortical bone mineral density, and trabecular density). Although these relationships were broadly equivalent in HBM cases and controls, there was some evidence that associations between sclerostin and trabecular phenotypes were stronger in HBM cases, particularly for radial trabecular density (interaction P < .01). CONCLUSIONS: Circulating plasma sclerostin concentrations are increased in both LRP5 and non-LRP5 HBM compared with controls. In addition to the general positive relationship between sclerostin and DXA/peripheral quantitative computed tomography parameters, genetic factors predisposing to HBM may contribute to increased sclerostin levels.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To the Editor: Dillon and colleagues present a challenging perspective on the evidence comparing partial foot amputation (PFA) and below-knee amputation (BKA) outcomes.1,2 Australia's diabetes-related major amputation rates have only recently reduced to international levels3 and we fear that any oversimplistic perspectives may be detrimental to these improved rates and, importantly, to our patients. Thus, we believe these articles1,2 should be read cognisant of some important points...

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective: To determine the extent to which different strength training exercises selectively activate the commonly injured biceps femoris long head (BFLH) muscle. Methods: This two-part observational study recruited 24 recreationally active males. Part 1 explored the amplitudes and the ratios of lateral to medial hamstring (BF/MH) normalised electromyography (nEMG) during the concentric and eccentric phases of 10 common strength training exercises. Part 2 used functional magnetic resonance imaging (fMRI) to determine the spatial patterns of hamstring activation during two exercises which i) most selectively, and ii) least selectively activated the BF in part 1. Results: Eccentrically, the largest BF/MH nEMG ratio was observed in the 45° hip extension exercise and the lowest was observed in the Nordic hamstring (NHE) and bent-knee bridge exercises. Concentrically, the highest BF/MH nEMG ratio was observed during the lunge and 45° hip extension and the lowest was observed for the leg curl and bent-knee bridge. fMRI revealed a greater BFLH to semitendinosus activation ratio in the 45° hip extension than the NHE (p<0.001). The T2 increase after hip extension for BFLH, semitendinosus and semimembranosus muscles were greater than that for BFSH (p<0.001). During the NHE, the T2 increase was greater for the semitendinosus than for the other hamstrings (p≤0.002). Conclusion: This investigation highlights the non-uniformity of hamstring activation patterns in different tasks and suggests that hip extension exercise more selectively activates the BFLH while the NHE preferentially recruits the semitendinosus. These findings have implications for strength training interventions aimed at preventing hamstring injury.