441 resultados para Investigative tasks
Resumo:
Monotony has been identified as a contributing factor to road crashes. Drivers’ ability to react to unpredictable events deteriorates when exposed to highly predictable and uneventful driving tasks, such as driving on Australian rural roads, many of which are monotonous by nature. Highway design in particular attempts to reduce the driver’s task to a merely lane-keeping one. Such a task provides little stimulation and is monotonous, thus affecting the driver’s attention which is no longer directed towards the road. Inattention contributes to crashes, especially for professional drivers. Monotony has been studied mainly from the endogenous perspective (for instance through sleep deprivation) without taking into account the influence of the task itself (repetitiveness) or the surrounding environment. The aim and novelty of this thesis is to develop a methodology (mathematical framework) able to predict driver lapses of vigilance under monotonous environments in real time, using endogenous and exogenous data collected from the driver, the vehicle and the environment. Existing approaches have tended to neglect the specificity of task monotony, leaving the question of the existence of a “monotonous state” unanswered. Furthermore the issue of detecting vigilance decrement before it occurs (predictions) has not been investigated in the literature, let alone in real time. A multidisciplinary approach is necessary to explain how vigilance evolves in monotonous conditions. Such an approach needs to draw on psychology, physiology, road safety, computer science and mathematics. The systemic approach proposed in this study is unique with its predictive dimension and allows us to define, in real time, the impacts of monotony on the driver’s ability to drive. Such methodology is based on mathematical models integrating data available in vehicles to the vigilance state of the driver during a monotonous driving task in various environments. The model integrates different data measuring driver’s endogenous and exogenous factors (related to the driver, the vehicle and the surrounding environment). Electroencephalography (EEG) is used to measure driver vigilance since it has been shown to be the most reliable and real time methodology to assess vigilance level. There are a variety of mathematical models suitable to provide a framework for predictions however, to find the most accurate model, a collection of mathematical models were trained in this thesis and the most reliable was found. The methodology developed in this research is first applied to a theoretically sound measure of sustained attention called Sustained Attention Response to Task (SART) as adapted by Michael (2010), Michael and Meuter (2006, 2007). This experiment induced impairments due to monotony during a vigilance task. Analyses performed in this thesis confirm and extend findings from Michael (2010) that monotony leads to an important vigilance impairment independent of fatigue. This thesis is also the first to show that monotony changes the dynamics of vigilance evolution and tends to create a “monotonous state” characterised by reduced vigilance. Personality traits such as being a low sensation seeker can mitigate this vigilance decrement. It is also evident that lapses in vigilance can be predicted accurately with Bayesian modelling and Neural Networks. This framework was then applied to the driving task by designing a simulated monotonous driving task. The design of such task requires multidisciplinary knowledge and involved psychologist Rebecca Michael. Monotony was varied through both the road design and the road environment variables. This experiment demonstrated that road monotony can lead to driving impairment. Particularly monotonous road scenery was shown to have the most impact compared to monotonous road design. Next, this study identified a variety of surrogate measures that are correlated with vigilance levels obtained from the EEG. Such vigilance states can be predicted with these surrogate measures. This means that vigilance decrement can be detected in a car without the use of an EEG device. Amongst the different mathematical models tested in this thesis, only Neural Networks predicted the vigilance levels accurately. The results of both these experiments provide valuable information about the methodology to predict vigilance decrement. Such an issue is quite complex and requires modelling that can adapt to highly inter-individual differences. Only Neural Networks proved accurate in both studies, suggesting that these models are the most likely to be accurate when used on real roads or for further research on vigilance modelling. This research provides a better understanding of the driving task under monotonous conditions. Results demonstrate that mathematical modelling can be used to determine the driver’s vigilance state when driving using surrogate measures identified during this study. This research has opened up avenues for future research and could result in the development of an in-vehicle device predicting driver vigilance decrement. Such a device could contribute to a reduction in crashes and therefore improve road safety.
Resumo:
"The 1990s saw the United Nations, the militaries of key member states, and NGOs increasingly entangled in the complex affairs of disrupted states. Whether as deliverers of humanitarian assistance or as agents of political, social, and civic reconstruction, whether in Somalia, Bosnia, Kosovo, or East Timor, these actors have had to learn ways of interacting with each other in order to optimize the benefits for the populations they seek to assist. Yet the challenges have proved daunting. Civil and military actors have different organizational cultures and standard operating procedures and are confronted with the need to work together to perform tasks to which different actors may attach quite different priorities."--BOOK JACKET.
Resumo:
Melanoma is one of the most aggressive cancers affecting humans. Although early melanomas are curable with surgical excision, metastatic melanomas are associated with high mortality. The mechanism of melanoma development, progression, and metastasis is largely unknown. In order to uncover genes unique to melanoma cells, we used high-density DNA microarrays to examine the gene expression profiles of metastatic melanoma nodules using benign nevi as controls. Over 190 genes were significantly overexpressed in metastatic melanomas compared with normal nevi by at least 2-fold. One of the most abundantly expressed genes in metastatic melanoma nodules is osteopontin (OPN). Immunohistochemistry staining on tissue microarrays and individual skin biopsies representing different stages of melanoma progression revealed that OPN expression is first acquired at the step of melanoma tissue invasion. In addition, blocking of OPN expression by RNA interference reduced melanoma cell numbers in vitro. Our observations suggest that OPN may be acquired early in melanoma development and progression, and may enhance tumor cell growth in invasive melanoma.
Resumo:
The work presents a new approach to the problem of simultaneous localization and mapping - SLAM - inspired by computational models of the hippocampus of rodents. The rodent hippocampus has been extensively studied with respect to navigation tasks, and displays many of the properties of a desirable SLAM solution. RatSLAM is an implementation of a hippocampal model that can perform SLAM in real time on a real robot. It uses a competitive attractor network to integrate odometric information with landmark sensing to form a consistent representation of the environment. Experimental results show that RatSLAM can operate with ambiguous landmark information and recover from both minor and major path integration errors.
Resumo:
The Lane Change Test (LCT) is one of the growing number of methods developed to quantify driving performance degradation brought about by the use of in-vehicle devices. Beyond its validity and reliability, for such a test to be of practical use, it must also be sensitive to the varied demands of individual tasks. The current study evaluated the ability of several recent LCT lateral control and event detection parameters to discriminate between visual-manual and cognitive surrogate In-Vehicle Information System tasks with different levels of demand. Twenty-seven participants (mean age 24.4 years) completed a PC version of the LCT while performing visual search and math problem solving tasks. A number of the lateral control metrics were found to be sensitive to task differences, but the event detection metrics were less able to discriminate between tasks. The mean deviation and lane excursion measures were able to distinguish between the visual and cognitive tasks, but were less sensitive to the different levels of task demand. The other LCT metrics examined were less sensitive to task differences. A major factor influencing the sensitivity of at least some of the LCT metrics could be the type of lane change instructions given to participants. The provision of clear and explicit lane change instructions and further refinement of its metrics will be essential for increasing the utility of the LCT as an evaluation tool.
Resumo:
A national-level safety analysis tool is needed to complement existing analytical tools for assessment of the safety impacts of roadway design alternatives. FHWA has sponsored the development of the Interactive Highway Safety Design Model (IHSDM), which is roadway design and redesign software that estimates the safety effects of alternative designs. Considering the importance of IHSDM in shaping the future of safety-related transportation investment decisions, FHWA justifiably sponsored research with the sole intent of independently validating some of the statistical models and algorithms in IHSDM. Statistical model validation aims to accomplish many important tasks, including (a) assessment of the logical defensibility of proposed models, (b) assessment of the transferability of models over future time periods and across different geographic locations, and (c) identification of areas in which future model improvements should be made. These three activities are reported for five proposed types of rural intersection crash prediction models. The internal validation of the model revealed that the crash models potentially suffer from omitted variables that affect safety, site selection and countermeasure selection bias, poorly measured and surrogate variables, and misspecification of model functional forms. The external validation indicated the inability of models to perform on par with model estimation performance. Recommendations for improving the state of the practice from this research include the systematic conduct of carefully designed before-and-after studies, improvements in data standardization and collection practices, and the development of analytical methods to combine the results of before-and-after studies with cross-sectional studies in a meaningful and useful way.
Resumo:
In 1984, the International Agency for Research on Cancer determined that working in the primary aluminium production process was associated with exposure to certain polycyclic aromatic hydrocarbons (PAHs) that are probably carcinogenic to humans. Key sources of PAH exposure within the occupational environment of a prebake aluminium smelter are processes associated with use of coal-tar pitch. Despite the potential for exposure via inhalation, ingestion and dermal adsorption, to date occupational exposure limits exist only for airborne contaminants. This study, based at a prebake aluminium smelter in Queensland, Australia, compares exposures of workers who came in contact with PAHs from coal-tar pitch in the smelter’s anode plant (n = 69) and cell-reconstruction area (n = 28), and a non-production control group (n = 17). Literature relevant to PAH exposures in industry and methods of monitoring and assessing occupational hazards associated with these compounds are reviewed, and methods relevant to PAH exposure are discussed in the context of the study site. The study utilises air monitoring of PAHs to quantify exposure via the inhalation route and biological monitoring of 1-hydroxypyrene (1-OHP) in urine of workers to assess total body burden from all routes of entry. Exposures determined for similar exposure groups, sampled over three years, are compared with published occupational PAH exposure limits and/or guidelines. Results of paired personal air monitoring samples and samples collected for 1-OHP in urine monitoring do not correlate. Predictive ability of the benzene-soluble fraction (BSF) in personal air monitoring in relation to the 1-OHP levels in urine is poor (adjusted R2 < 1%) even after adjustment for potential confounders of smoking status and use of personal protective equipment. For static air BSF levels in the anode plant, the median was 0.023 mg/m3 (range 0.002–0.250), almost twice as high as in the cell-reconstruction area (median = 0.013 mg/m3, range 0.003–0.154). In contrast, median BSF personal exposure in the anode plant was 0.036 mg/m3 (range 0.003–0.563), significantly lower than the median measured in the reconstruction area (0.054 mg/m3, range 0.003–0.371) (p = 0.041). The observation that median 1-OHP levels in urine were significantly higher in the anode plant than in the reconstruction area (6.62 µmol/mol creatinine, range 0.09–33.44 and 0.17 µmol/mol creatinine, range 0.001–2.47, respectively) parallels the static air measurements of BSF rather than the personal air monitoring results (p < 0.001). Results of air measurements and biological monitoring show that tasks associated with paste mixing and anode forming in the forming area of the anode plant resulted in higher PAH exposure than tasks in the non-forming areas; median 1-OHP levels in urine from workers in the forming area (14.20 µmol/mol creatinine, range 2.02–33.44) were almost four times higher than those obtained from workers in the non-forming area (4.11 µmol/mol creatinine, range 0.09–26.99; p < 0.001). Results justify use of biological monitoring as an important adjunct to existing measures of PAH exposure in the aluminium industry. Although monitoring of 1-OHP in urine may not be an accurate measure of biological effect on an individual, it is a better indicator of total PAH exposure than BSF in air. In January 2005, interim study results prompted a plant management decision to modify control measures to reduce skin exposure. Comparison of 1-OHP in urine from workers pre- and post-modifications showed substantial downward trends. Exposure via the dermal route was identified as a contributor to overall dose. Reduction in 1-OHP urine concentrations achieved by reducing skin exposure demonstrate the importance of exposure via this alternative pathway. Finally, control measures are recommended to ameliorate risk associated with PAH exposure in the primary aluminium production process, and suggestions for future research include development of methods capable of more specifically monitoring carcinogenic constituents of PAH mixtures, such as benzo[a]pyrene.
Resumo:
This thesis addresses the problem of detecting and describing the same scene points in different wide-angle images taken by the same camera at different viewpoints. This is a core competency of many vision-based localisation tasks including visual odometry and visual place recognition. Wide-angle cameras have a large field of view that can exceed a full hemisphere, and the images they produce contain severe radial distortion. When compared to traditional narrow field of view perspective cameras, more accurate estimates of camera egomotion can be found using the images obtained with wide-angle cameras. The ability to accurately estimate camera egomotion is a fundamental primitive of visual odometry, and this is one of the reasons for the increased popularity in the use of wide-angle cameras for this task. Their large field of view also enables them to capture images of the same regions in a scene taken at very different viewpoints, and this makes them suited for visual place recognition. However, the ability to estimate the camera egomotion and recognise the same scene in two different images is dependent on the ability to reliably detect and describe the same scene points, or ‘keypoints’, in the images. Most algorithms used for this purpose are designed almost exclusively for perspective images. Applying algorithms designed for perspective images directly to wide-angle images is problematic as no account is made for the image distortion. The primary contribution of this thesis is the development of two novel keypoint detectors, and a method of keypoint description, designed for wide-angle images. Both reformulate the Scale- Invariant Feature Transform (SIFT) as an image processing operation on the sphere. As the image captured by any central projection wide-angle camera can be mapped to the sphere, applying these variants to an image on the sphere enables keypoints to be detected in a manner that is invariant to image distortion. Each of the variants is required to find the scale-space representation of an image on the sphere, and they differ in the approaches they used to do this. Extensive experiments using real and synthetically generated wide-angle images are used to validate the two new keypoint detectors and the method of keypoint description. The best of these two new keypoint detectors is applied to vision based localisation tasks including visual odometry and visual place recognition using outdoor wide-angle image sequences. As part of this work, the effect of keypoint coordinate selection on the accuracy of egomotion estimates using the Direct Linear Transform (DLT) is investigated, and a simple weighting scheme is proposed which attempts to account for the uncertainty of keypoint positions during detection. A word reliability metric is also developed for use within a visual ‘bag of words’ approach to place recognition.
Resumo:
A collaborative approach to home care (HC) delivery for older clients has taken centre stage (Nies, 2006). In Finland, public home help and home health care services have been combined to form the home care unit, whose goal is to provide a collaborative approach to care delivery through cooperation and sharing of responsibilities. In this model, the general practitioner (GP), home care nurses (HCN) and home help workers (HHW) care for shared clients. GPs and HCNs provide health care, such as monitoring of clients’ health status, and HHWs assist with personal care tasks such as dressing, washing and meal preparation. As the needs of older clients are multiple, collaboration is needed as one professional group cannot take sole responsibility (Nies, 2006). This paper reports on a study undertaken to examine home care unit care providers’ perspectives of the collaborative approach to HC delivery for older clients.
Resumo:
This paper demonstrates a model of self-regulation based on a qualitative research project with adult learners undertaking an undergraduate degree. The narrative about the participant’s life transitions, co-constructed with the researcher, yielded data about their generalised self-efficacy and resulted in a unique self-efficacy narrative for each participant. A model of self-regulation is proposed with potential applications for coaching, counselling and psychotherapy. A narrative method was employed to construct narratives about an individual’s self-efficacy in relation to their experience of learning and life transitions. The method involved a cyclical and iterative process using qualitative interviews to collect life history data from participants. In addition, research participants completed reflective homework tasks, and this data was included in the participant’s narratives. A highly collaborative method entailed narratives being co-constructed by researcher and research participants as the participants were guided in reflecting on their experience in relation to learning and life transitions; the reflection focused on behaviour, cognitions and emotions that constitute a sense of self-efficacy. The analytic process used was narrative analysis, in which life is viewed as constructed and experienced through the telling and retelling of stories and hence the analysis is the creation of a coherent and resonant story. The method of constructing self-efficacy narratives was applied to a sample of mature aged students starting an undergraduate degree. The research outcomes confirmed a three-factor model of self-efficacy, comprising three interrelated stages: initiating action, applying effort, and persistence in overcoming difficulties. Evaluation of the research process by participants suggested that they had gained an enhanced understanding of self-efficacy from their participation in the research process, and would be able to apply this understanding to their studies and other endeavours in the future. A model of self-regulation is proposed as a means for coaches, counsellors and psychotherapists working from a narrative constructivist perspective to assist clients facing life transitions by helping them generate selfefficacious cognitions, emotions and behaviour.
Resumo:
The world’s increasing complexity, competitiveness, interconnectivity, and dependence on technology generate new challenges for nations and individuals that cannot be met by “continuing education as usual” (The National Academies, 2009). With the proliferation of complex systems have come new technologies for communication, collaboration, and conceptualization. These technologies have led to significant changes in the forms of mathematical thinking that are required beyond the classroom. This paper argues for the need to incorporate future-oriented understandings and competencies within the mathematics curriculum, through intellectually stimulating activities that draw upon multidisciplinary content and contexts. The paper also argues for greater recognition of children’s learning potential, as increasingly complex learners capable of dealing with cognitively demanding tasks.
Resumo:
The 1990s saw the United Nations, the militaries of key member states, and NGOs increasingly entangled in the complex affairs of disrupted states. Whether as deliverers of humanitarian assistance or as agents of political, social, and civic reconstruction, whether in Somalia, Bosnia, Kosovo, or East Timor, these actors have had to learn ways of interacting with each other in order to optimize the benefits for the populations they seek to assist. Yet the challenges have proved daunting. Civil and military actors have different organizational cultures and standard operating procedures and are confronted with the need to work together to perform tasks to which different actors may attach quite different priorities. From Civil Strife to Civil Society explores the nature of these challenges, blending the experience of scholars and practitioners. It is underpinned by an understanding that recovery from disruption is a laborious process that can easily be de-railed. The first part of the book offers a rigorous examination of the dimensions of state disruption and the roles of the international community in responding to it; the second part looks at military doctrine for dealing with disorder and humanitarian emergencies; the third part examines mechanisms for ending violence and delivering justice in post-conflict times; the fourth part investigates the problems of rebuilding trust and promoting democracy; the fifth part deals with the reconstitution of the rule of law; while the sixth and seventh parts address the reestablishment of social and civil order.
Resumo:
Purpose: To investigate the influence of convergence on axial length and corneal topography in young adult subjects.---------- Methods: Fifteen emmetropic young adult subjects with normal binocular vision had axial length and corneal topography measured immediately before and after a 15-min period of base out (BO) prismatic spectacle lens wear. Two different magnitude prismatic spectacles were worn in turn (8 [DELTA] BO and 16 [DELTA] BO), and for both tasks, distance fixation was maintained for the duration of lens wear. Eight subjects returned on a separate day for further testing and had axial length measured before, during, and immediately after a 15-min convergence task.---------- Results: No significant change was found to occur in axial length either during or after the sustained convergence tasks (p > 0.6). Some small but significant changes in corneal topography were found to occur after sustained convergence. The most significant corneal change was observed after the 16 [DELTA] BO prism wear. The corneal refractive power spherocylinder power vector J0 was found to change by a small (mean change of 0.03 D after the 16 [DELTA] BO task) but statistically significant (p = 0.03) amount as a result of the convergence task (indicative of a reduction in with-the-rule corneal astigmatism after convergence). Corneal axial power was found to exhibit a significant flattening in superior regions. Conclusions: Axial length appears largely unchanged by a period of sustained convergence. However, small but significant changes occur in the topography of the cornea after convergence.
Resumo:
Purpose: To investigate the short term influence of imposed monocular defocus upon human optical axial length (the distance from anterior cornea to retinal pigment epithelium) and ocular biometrics. Methods: Twenty-eight young adult subjects (14 myopes and 14 emmetropes) had eye biometrics measured before and then 30 and 60 minutes after exposure to monocular (right eye) defocus. Four different monocular defocus conditions were tested, each on a separate day: control (no defocus), myopic (+3 D defocus), hyperopic (-3 D defocus) and diffuse (0.2 density Bangerter filter) defocus. The fellow eye was optimally corrected (no defocus). Results: Imposed defocus caused small but significant changes in optical axial length (p<0.0001). A significant increase in optical axial length (mean change +8 ± 14 μm, p=0.03) occurred following hyperopic defocus, and a significant reduction in optical axial length (mean change -13 ± 14 μm, p=0.0001) was found following myopic defocus. A small increase in optical axial length was observed following diffuse defocus (mean change +6 ± 13 μm, p=0.053). Choroidal thickness also exhibited some significant changes with certain defocus conditions. No significant difference was found between myopes and emmetropes in the changes in optical axial length or choroidal thickness with defocus. Conclusions: Significant changes in optical axial length occur in human subjects following 60 minutes of monocular defocus. The bi-directional optical axial length changes observed in response to defocus implies the human visual system is capable of detecting the presence and sign of defocus and altering optical axial length to move the retina towards the image plane.
Resumo:
This paper outlines a method of constructing narratives about an individual’s self-efficacy. Self-efficacy is defined as “people’s judgments of their capabilities to organise and execute courses of action required to attain designated types of performances” (Bandura, 1986, p. 391), and as such represents a useful construct for thinking about personal agency. Social cognitive theory provides the theoretical framework for understanding the sources of self-efficacy, that is, the elements that contribute to a sense of self-efficacy. The narrative approach adopted offers an alternative to traditional, positivist psychology, characterised by a preoccupation with measuring psychological constructs (like self-efficacy) by means of questionnaires and scales. It is argued that these instruments yield scores which are somewhat removed from the lived experience of the person—respondent or subject—associated with the score. The method involves a cyclical and iterative process using qualitative interviews to collect data from participants – four mature aged university students. The method builds on a three-interview procedure designed for life history research (Dolbeare & Schuman, cited in Seidman, 1998). This is achieved by introducing reflective homework tasks, as well as written data generated by research participants, as they are guided in reflecting on those experiences (including behaviours, cognitions and emotions) that constitute a sense of self-efficacy, in narrative and by narrative. The method illustrates how narrative analysis is used “to produce stories as the outcome of the research” (Polkinghorne, 1995, p.15), with detail and depth contributing to an appreciation of the ‘lived experience’ of the participants. The method is highly collaborative, with narratives co-constructed by researcher and research participants. The research outcomes suggest an enhanced understanding of self-efficacy contributes to motivation, application of effort and persistence in overcoming difficulties. The paper concludes with an evaluation of the research process by the students who participated in the author’s doctoral study.