341 resultados para International symposium
Resumo:
Social Interiors (Julian Knowles, Rik Rue, Shane Fahey) are currently developing a major sound art project entitled Flux Density, in collaboration with a team of artists, focused on investigating the changing relationships between emerging digital technologies and traditional ‘obsolete’ analogue media. The project has two main components. – a curated compilation and a live performance. It is a large scale curatorial and performance project led by Social Interiors with assistant curators Joel Stern, Alessio Cavallaro and Shannon O’Neill. Presentation - International Symposium of Electronic Art. Social Interiors are one of Australia’s best known experimental sound ensembles. Project will consist of an online compilation of historic music emerging from the 80s cassette culture era, remix based works by Social Interiors, and work from new cassette labels established in a post internet era. Performance project will take place in Sydney and consist of Social Interiors in performance/collaboration with a range of well known artists. Partners include ABC Radio, ISEA, and Extreme Records.
Resumo:
This research proposes the development of interfaces to support collaborative, community-driven inquiry into data, which we refer to as Participatory Data Analytics. Since the investigation is led by local communities, it is not possible to anticipate which data will be relevant and what questions are going to be asked. Therefore, users have to be able to construct and tailor visualisations to their own needs. The poster presents early work towards defining a suitable compositional model, which will allow users to mix, match, and manipulate data sets to obtain visual representations with little-to-no programming knowledge. Following a user-centred design process, we are subsequently planning to identify appropriate interaction techniques and metaphors for generating such visual specifications on wall-sized, multi-touch displays.
Resumo:
In this study, the process of the resonant second harmonics generation of the submillimeter (SM), which is of interest for design of the semiconductor frequency multipliers is evaluated. Particularly, the possibility to use the semiconductor superlattice-metal structures as an effective second harmonics generator is demonstrated.
Resumo:
Using the lens of audit pricing, we provide insights into auditors’ behaviors in relation to the risk of asset securitizations to bank holding companies in a period encompassing the Global Financial Crisis (GFC) and the introduction of the accounting standards FAS 166 and FAS 167. Using US bank holding company data from 2003 to 2011, we find significant and positive associations between asset securitization risks and audit fees. We find that auditors appear to focus on different aspects of asset securitization risks after the onset of the GFC, and increase their attention to the systemic risks facing bank holding companies in general. After the implementation of FAS 166 and FAS 167, which removed the discretion to treat asset securitizations as sales and required the consolidation of the accounts of special purpose entities, asset securitization risks no longer have a significant effect on audit fees.
Resumo:
Supercapacitors are increasingly used as short term energy storage elements in distributed generation systems. The traditional approach in integrating them to the main system is the use of interfacing dc-dc converters which introduce additional costs and power losses. This paper therefore, presents a novel direct integration scheme for supercapacitors and thereby eliminates associated costs and power losses of interfacing converters. The idea is simply to replace ordinary capacitors of three-level flying-capacitor rectifiers with supercapacitors and operate them under variable voltage conditions. An analysis on the reduction of power losses by the proposed system is presented. Furthermore, supercapacitor sizing and implementation issues such as effects of the variable voltage operation and resistive behavior of supercapacitors at high frequencies are also discussed. Simulation results are presented to verify the efficacy of the proposed system in suppressing short term power fluctuations in wind generation system.
Resumo:
The drive towards high efficiency wind energy conversion systems has resulted in almost all the modern wind turbines to operate in the variable speed mode which inevitably requires back-to-back power electronic converters to decouple generator dynamics from the grid. The aim of this paper is to present an analysis on suitable topologies for the generator-side converter (rectifier) of the back-to-back converter arrangement. Performance of the two most popular rectifier systems, namely, the passive diode bridge rectifier and the active six-switch two-level rectifier are taken as two extremes to evaluate other topologies presented in this paper. The other rectifier systems considered in this study include combinations of a diode bridge rectifier and electronic reactance(s), a combination of a rectifier and a dc-dc converter and a half controlled rectifier. Diode-clamped and capacitor-clamped three-level active rectifier topologies and their possible switch reductions are also discussed in relation to the requirements of modern high power wind energy conversion systems (WECSs). Simulation results are presented to support conclusion derived from this analysis.
Resumo:
A high-frequency-link (HFL) micro inverter with a front-end diode clamped multi-level inverter and a grid-connected half-wave cycloconverter is proposed. The diode clamped multi-level inverter with an auxiliary capacitor is used to generate high-frequency (HF) three level quasi square-wave output and it is fed into a series resonant tank to obtain high frequency continuous sinusoidal current. The obtained continuous sinusoidal current is modulated by using the grid-connected half-wave cycloconverter to obtain grid synchronized output current in phase with the grid voltage. The phase shift power modulation is used with auxiliary capacitor at the front-end multi-level inverter to have soft-switching. The phase shift between the HFL resonant current and half-wave cycloconverter input voltage is modulated to obtain grid synchronized output current.
Resumo:
Attention has recently focussed on MgB2 superconductors (Tc~39K) which can be formed into wires with high material density and viable critical current densities (Jc)1. However, broader utilisation of this diboride and many others is likely to occur when facile synthesis for bulk applications is developed. To date, common synthesis methods include high temperature sintering of mixed elemental powders2, combustion synthesis3, mechano-chemical mixing with high temperature sintering4 and high pressure (~GPa region) with high temperature. In this work, we report on a lower temperature, moderate (<4MPa) pressure method to synthesise metal diborides.
Resumo:
The metal borides, in particular the diborides and hexaborides, contain stoichiometric forms that include insulators, semiconductors and superconductors. In addition, their end-member structures have high symmetry and two atoms although, in general, substitution(s) of multi-valent ions into the metal site occurs consistent with Vegard’s law. These characteristics allow for fundamental comparison of important physical properties such as superconductivity and insulation within a relatively simple structure type. Our early work1,2 has demonstrated this for the hexaborides and this work compares similar attributes across a broader suite of boride structures. In all cases, theoretical calculations are referenced to structures determined via high resolution neutron or X-ray diffraction experiments.
Resumo:
Synthesis of metal borides is typically undertaken at high temperature using direct combinations of elemental starting materials[1]. Techniques include carbothermal reduction using elemental carbon, metals, metal oxides and B2O3[2] or reaction between metal chlorides and boron sources[3]. These reactions generally require temperatures greater than 1200oC and are not readily suitable for an industrial setting nor scalable to bulk production.
Resumo:
This research draws on theories of emergence to inform the creation of an artistic and direct visualization. This is an interactive artwork and drawing tool for creative participant experiences. As is discussed, emergence is characteristically creative. It is also debated across and within disciplines, resulting in a range of understandings as well as models. This paper shows how one field’s understanding of emergence (complexity theory) can be used to facilitate emergence in another domain (design research) and, importantly provide the opportunity for someone to act creatively. This paper begins with a brief review of some theories of emergence to show how they interrelate and can effect the perception of emergent structures in an observer, and, correspondingly, the design for creative experience. This is subsequently demonstrated in the second section of the paper where an interactive artwork and drawing application, Of me with me, is presented. This artwork by the author was created during collaboration with community artists from Cerebral Palsy League. The discussion covers the application of emergence theories to create this visualization in order facilitate the perception of structures and creative behaviours in a participant and to facilitate self-efficacy in the community artist user group.
Resumo:
Synthesis of high quality boron carbide (B4C) powder is achieved by carbothermal reduction of boron oxide (B2O3) from a condensed boric acid (H3BO3) / polyvinyl acetate (PVAc) product. Precursor solutions are prepared via polymerisation of vinyl acetate (VA) in methanol in the presence of dissolved H3BO3. With excess VA monomer being removed during evaporation of the solvent, the polymerisation time is then used to manage availability of carbon for reaction.
Resumo:
This paper investigates demodulation of differentially phase modulated signals DPMS using optimal HMM filters. The optimal HMM filter presented in the paper is computationally of order N3 per time instant, where N is the number of message symbols. Previously, optimal HMM filters have been of computational order N4 per time instant. Also, suboptimal HMM filters have be proposed of computation order N2 per time instant. The approach presented in this paper uses two coupled HMM filters and exploits knowledge of ...
Resumo:
An opportunistic relay selection scheme improving cooperative diversity is devised using the concept of a virtual SIMO-MISO antenna array. By incorporating multiple users as a virtual distributed antenna, not only helps combat fading but also provides significant advantage in terms of energy consumption. The proposed efficient multiple relay selection uses the concept of the distributed Alamouti scheme in a time varying environment to realize cooperative networking in wireless relay networks and provides the platform for outage, Diversiy-Multiplexing Tradeoff (DMT) and Bit-Error-Rate (BER) analysis to conclude that it is capable of achieving promising diversity gains by operating at much lower SNR when compared with conventional relay selection methods. It also has the added advantage of conserving energy for the relays that are reachable but not selected for the cooperative communication.