289 resultados para Illinois coal industry white paper
Resumo:
Cyclostationary models for the diagnostic signals measured on faulty rotating machineries have proved to be successful in many laboratory tests and industrial applications. The squared envelope spectrum has been pointed out as the most efficient indicator for the assessment of second order cyclostationary symptoms of damages, which are typical, for instance, of rolling element bearing faults. In an attempt to foster the spread of rotating machinery diagnostics, the current trend in the field is to reach higher levels of automation of the condition monitoring systems. For this purpose, statistical tests for the presence of cyclostationarity have been proposed during the last years. The statistical thresholds proposed in the past for the identification of cyclostationary components have been obtained under the hypothesis of having a white noise signal when the component is healthy. This need, coupled with the non-white nature of the real signals implies the necessity of pre-whitening or filtering the signal in optimal narrow-bands, increasing the complexity of the algorithm and the risk of losing diagnostic information or introducing biases on the result. In this paper, the authors introduce an original analytical derivation of the statistical tests for cyclostationarity in the squared envelope spectrum, dropping the hypothesis of white noise from the beginning. The effect of first order and second order cyclostationary components on the distribution of the squared envelope spectrum will be quantified and the effectiveness of the newly proposed threshold verified, providing a sound theoretical basis and a practical starting point for efficient automated diagnostics of machine components such as rolling element bearings. The analytical results will be verified by means of numerical simulations and by using experimental vibration data of rolling element bearings.
Resumo:
Contemporary online environments suffer from a regulatory gap; that is there are few options for participants between customer service departments and potentially expensive court cases in foreign jurisdictions. Whatever form of regulation ultimately fills that gap will be charged with determining whether specific behavior, within a specific environment, is fair or foul; whether it’s cheating or not. However, cheating is a term that, despite substantial academic study, remains problematic. Is anything the developer doesn’t want you to do cheating? Is it only if your actions breach the formal terms of service? What about the community norms, do they matter at all? All of these remain largely unresolved questions, due to the lack of public determination of cases in such environments, which have mostly been settled prior to legal action. In this paper, I propose a re-branding of participant activity in such environments into developer-sanctioned, advantage play, and cheating. Advantage play, ultimately, is activity within the environment in which the player is able to turn the mechanics of the environment to their advantage without breaching the rules of the environment. Such a definition, and the term itself, is based on the usage of the term within the gambling industry, in which advantage play is considered betting with the advantage in the players’ favor rather than that of the house. Through examples from both the gambling industry and the Massively Multiplayer Role-Playing Game Eve Online, I consider the problems in defining cheating, suggest how the term ‘advantage play’ may be useful in understanding participants behavior in contemporary environments, and ultimately consider the use of such terminology in dispute resolution models which may overcome this regulatory gap.
Resumo:
This paper focuses on Australian development firms in the console and mobile games industry in order to understand how small firms in a geographically remote and marginal position in the global industry are able to relate to global firms and capture revenue share. This paper shows that, while technological change in the games industry has resulted in the emergence of new industry segments based on transactional rather than relational forms of economic coordination, in which we might therefore expect less asymmetrical power relations, lead firms retain a position of power in the global games entertainment industry relative to remote developers. This has been possible because lead firms in the emerging mobile devices market have developed and sustained bottlenecks in their segment of the industry through platform competition and the development of an intensely competitive ecosystem of developers. Our research shows the critical role of platform competition and bottlenecks in influencing power asymmetries within global markets.
Resumo:
Significant investments in developing technological innovations have been made in the Australian beef industry but with low adoption rates. By modelling the key variables and their interactions in the innovation adoption process, this research seeks to demonstrate the complexity and dynamics of the process. This research uses causal loop modelling and develops a holistic model of the current innovation adoption system in the Australian beef industry to show the complexity of dynamic interactions among multiple variables. It is suggested that innovation adoption is such an extremely complex issue, and we need to shift our views on this issue from a paradigm of linear thinking to systems thinking. Innovation adoption is more likely to be enhanced based on a full understanding of the complexity and dynamics of the system as a whole. The paper demonstrates to practitioners and developers of innovation the multiple variables and interactions impacting innovation adoption.
Resumo:
A recent success story of the Australian videogames industry is Brisbane based Halfbrick Studios, developer of the hit game for mobile devices, Fruit Ninja. Halfbrick not only survived the global financial crisis and an associated downturn in the Australian industry, but grew strongly, moving rapidly from developing licensed properties for platforms such as Game Boy Advance, Nintendo DS, and Playstation Portable (PSP) to becoming an independent developer and publisher of in-house titles, generating revenue both through App downloads and merchandise sales. Amongst the reasons for Halfbrick’s success is their ability to adaptively transform by addressing different technical platforms, user dynamics, business models and market conditions. Our ongoing case-study research from 2010 into Halfbrick’s innovation processes, culminating with some 10 semi-structured interviews with senior managers and developers, has identified a strong focus on workplace organisational culture, with staff reflecting that the company is a flat, team-based organisation devolving as much control as possible to the development teams directly, and encouraging a work-life balance in which creativity can thrive. The success of this strategy is evidenced through Halfbrick’s low staff turnover; amongst our interviewees most of the developers had been with the company for a number of years, with all speaking positively of the workplace culture and sense of creative autonomy they enjoyed. Interviews with the CEO, Shainiel Deo, and team leaders highlighted the autonomy afforded to each team and the organisation and management of the projects on which they work. Deo and team leaders emphasised the collaboration and communication skills they require in the developers that they employ, and that these characteristics were considered just as significant in hiring decisions as technical skills. Halfbrick’s developers celebrate their workplace culture and insist it has contributed to their capacity for innovation and to their commercial success with titles such as Fruit Ninja. This model of organisational management is reflected in both Stark’s (2009) idea of heterarchy, and Neff’s (2012) concept of venture labour, and provides a different perspective on the industry than the traditional political economy critique of precarious labour exploited by gaming conglomerates. Nevertheless, throughout many of the interviews and in our informal discussions with Halfbrick developers there is also a sense that this rewarding culture is quite tenuous and precarious in the context of a rapidly changing and uncertain global videogames industry. Whether such a workplace culture represents the future of the games industry, or is merely a ‘Prague Spring’ before companies such as Halfbrick are swallowed by traditional players’ remains to be seen. However, as the process of rapid and uncertain transformation plays out across the videogames industry, it is important to pay attention to emerging modes of organisation and workplace culture, even whilst they remain at the margins of the industry. In this paper we investigate Halfbrick’s workplace culture and ask how sustainable is this kind of rewarding and creative workplace?
Resumo:
This paper addresses contemporary neoliberal mobilisations of community undertaken by private corporations. It does so by examining the ways in which the mining industry, empowered through the legitimising framework of corporate social responsibility, is increasingly and profoundly involved in shaping the meaning, practice, and experience of ‘local community’. We draw on a substantial Australian case study, consisting of interviews and document analysis, as a means to examine ‘community-engagement’ practices undertaken by BHP Billiton’s Ravensthorpe Nickel Operation in the Shire of Ravensthorpe in rural Australia. This engagement, we argue, as a process of deepening neoliberalisation simultaneously defines and transforms local community according to the logic of global capital. As such, this study has implications for critical understandings of the intersections among corporate social responsibility, neoliberalisation, community, and capital.
Resumo:
Wind power is one of the world's major renewable energy sources, and its utilization provides an important contribution in helping solve the energy problems of many countries. After nearly 40 years of development, China's wind power industry now not only manufactures its own massive six MW turbines but also has the largest capacity in the world with a national output of 50 million MW•h in 2010 and set to rise by eight times of that amount by 2020. This paper investigates this development route by analyzing relevant academic literature, statistics, laws and regulations, policies and research and industry reports. The main drivers of the development in the industry are identified as technologies, turbines, wind farm construction, pricing mechanism and government support systems, each of which is also divided into different stages with distinctive features. A systematic review of these aspects provides academics and practitioners with a better understanding of the history of the wind power industry in China and reasons for its rapid development with a view to enhancing progress in wind power development both in China and the world generally.
Resumo:
The incipient Underground Coal Gasification (UCG) industry in Queensland, Australia, undertook three trial projects in two Mesozoic basins of southeast Queensland. The experiences of these three operations provide useful retrospective insight into gasifier productivity. This paper identifies key output measures of gasifier ‘success’ including output gas composition, presence of contaminants in groundwater and consistency of chamber operation. Likewise, a review of the geological and hydrogeological understanding of each site prior to gasifier commissioning was undertaken. Productivity parameters from gasification were then correlated against the level of baseline geological/hydrogeological understanding for each site. The aim of the study was to identify the optimum scope of geological and hydrogeological understanding required at the site assessment phase to ensure safe, maximum gasifier output during production phase. This approach allows identification of poor or unexpected performance that is attributable to pre-existing uncertainty. A historical review of gasifier conditions inferred from the three trial projects is presented. Hence from the Queensland experiences it is possible to identify what aspects of baseline geological understanding should be clearly understood at the site selection phase in order to limit anomalous gasifier performance and undesirable deviations, and maximise production output.
Resumo:
The wine industry has become fiercely competitive worldwide and as a result, consumers are increasingly exposed to a wider range of wines in retail outlets. This expanding consumer choice means that there is a need for Australian wineries to develop and build consumer loyalty toward their brands. This paper aims to empirically examine the factors influencing consumer loyalty to wine brands. Using data from Australian wine consumers, the authors empirically test a model of antecedents of wine brand loyalty. The model considers wine brand trust, wine brand satisfaction, wine knowledge, and wine experience. Hypotheses were tested with structural equation modeling. The findings of this study show that wine knowledge and wine experience affect wine brand loyalty indirectly through wine brand trust and wine brand satisfaction. In addition, it is demonstrated that consumer satisfaction with a wine brand is the strongest driver of wine brand loyalty. The result of this study has value for Australian wineries, wine retailers, and wine marketers.
Resumo:
The complex supply chain relations of the construction industry, coupled with the substantial amount of information to be shared on a regular basis between the parties involved, make the traditional paper-based data interchange methods inefficient, error prone and expensive. The successful information technology (IT) applications that enable seamless data interchange, such as the Electronic Data Interchange (EDI) systems, have generally failed to be successfully implemented in the construction industry. An alternative emerging technology, Extensible Markup Language (XML), and its applicability to streamline business processes and to improve data interchange methods within the construction industry are analysed, as is the EDI technology to identify the strategic advantages that XML technology provides to overcome the barriers to implementation. In addition, the successful implementation of XML-based automated data interchange platforms for a large organization, and the proposed benefits thereof, are presented as a case study.
Resumo:
Governments have recognised that the technological trades rely on knowledge embedded traditionally in science, technology, engineering and mathematics (STEM) disciplines. In this paper, we report preliminary findings on the development of two curricula that attempt to integrate science and mathematics with workplace knowledge and practices. We argue that these curricula provide educational opportunities for students to pursue their preferred career pathways. These curricula were co-developed by industry and educational personnel across two industry sectors, namely, mining and aerospace. The aim was to provide knowledge appropriate for students moving from school to the workplace in the respective industries. The analysis of curriculum and associated policy documents reveals that the curricula adopt applied learning orientations through teaching strategies and assessment practices which focus on practical skills. However, although key theoretical science and maths concepts have been well incorporated, the extent to which knowledge deriving from workplace practices is included varies across the curricula. Our findings highlight the importance of teachers having substantial practical industry experience and the role that whole school policies play in attempts to align the range of learning experiences with the needs of industry.
Resumo:
Contrast-matching ultrasmall-angle neutron scattering (USANS) and small-angle neutron scattering (SANS) techniques were used for the first time to determine both the total pore volume and the fraction of the pore volume that is inaccessible to deuterated methane, CD4, in four bituminous coals in the range of pore sizes between ∼10 Å and ∼5 μm. Two samples originated from the Illinois Basin in the U.S.A., and the other two samples were commercial Australian bituminous coals from the Bowen Basin. The total and inaccessible porosity were determined in each coal using both Porod invariant and the polydisperse spherical particle (PDSP) model analysis of the scattering data acquired from coals both in vacuum and at the pressure of CD4, at which the scattering length density of the pore-saturating fluid is equal to that of the solid coal matrix (zero average contrast pressure). The total porosity of the coals studied ranged from 7 to 13%, and the volume of pores inaccessible to CD4 varied from ∼13 to ∼36% of the total pore volume. The volume fraction of inaccessible pores shows no correlation with the maceral composition; however, it increases with a decreasing total pore volume. In situ measurements of the structure of one coal saturated with CO2 and CD4 were conducted as a function of the pressure in the range of 1−400 bar. The neutron scattering intensity from small pores with radii less than 35 Å in this coal increased sharply immediately after the fluid injection for both gases, which demonstrates strong condensation and densification of the invading subcritical CO2 and supercritical methane in small pores.
Resumo:
Fluid–solid interactions in natural and engineered porous solids underlie a variety of technological processes, including geological storage of anthropogenic greenhouse gases, enhanced coal bed methane recovery, membrane separation, and heterogeneous catalysis. The size, distribution and interconnectivity of pores, the chemical and physical properties of the solid and fluid phases collectively dictate how fluid molecules migrate into and through the micro- and meso-porous media, adsorb and ultimately react with the solid surfaces. Due to the high penetration power and relatively short wavelength of neutrons, smallangle neutron scattering (SANS) as well as ultra small-angle scattering (USANS) techniques are ideally suited for assessing the phase behavior of confined fluids under pressure as well as for evaluating the total porosity in engineered and natural porous systems including coal. Here we demonstrate that SANS and USANS can be also used for determining the fraction of the pore volume that is actually accessible to fluids as a function of pore sizes and study the fraction of inaccessible pores as a function of pore size in three coals from the Illinois Basin (USA) and Bowen Basin (Australia). Experiments were performed at CO2 and methane pressures up to 780 bar, including pressures corresponding to zero average contrast condition (ZAC), which is the pressure where no scattering from the accessible pores occurs. Scattering curves at the ZAC were compared with the scattering from same coals under vacuum and analysed using a newly developed approach that shows that the volume fraction of accessible pores in these coals varies between �90% in the macropore region to �30% in the mesopore region and the variation is distinctive for each of the examined coals. The developed methodology may be also applied for assessing the volume of accessible pores in other natural underground formations of interest for CO2 sequestration, such as saline aquifers as well as for estimating closed porosity in engineered porous solids of technological importance.
Resumo:
This paper reports a study of ion exchange (IX) as an alternative CSG water treatment to the widely used reverse osmosis (RO) desalination process. An IX pilot plant facility has been constructed and operated using both synthetic and real CSG water samples. Application of appropriate synthetic resin technology has proved the effectiveness of IX processes.
Resumo:
In the past decade the ‘creative cluster’ has become a driver of urban renewal in China. Many cluster developments attract human capital and investment to post-industrial spaces. This paper looks at two developments which are more post-agricultural than post-industrial: the first is Songzhuang, a large scale contemporary art community situated on the eastern fringe of Beijing, the second is Hangzhou’s White Horse Lake Creative Eco-City, a ‘mixed variety’ cluster model which integrates elements of art, fashion, design and animation. The common factor in both cases is how they came into existence. In both districts urban creative workers moved into a rural environment. Drawing on interviews with planners, officials, and residents we investigate the challenges of sustaining such fringe clusters.