835 resultados para Human Experimentation.
Resumo:
The links between the environment and human rights are well established internationally. It is accepted that environmental problems impact on individuals’ and communities’ enjoyment of rights which are guaranteed to them under international human rights law. Environmental issues also impact on governments’ capacity to protect and fulfil the rights of their citizens. In addition to these links between the environment and human rights, it is argued that human rights principles offer a strategy for addressing environmental injustice. The justice implications of environmental problems are well documented, with many examples where pollution, deforestation or other degradation disproportionately impacts upon poorer neighbourhoods or areas populated by minority groups. On the international level, there are environmental injustices which exist between developed and developing states. Further, there are also potential injustices for future generations. This paper investigates the role of human rights principles in addressing these instances of environmental injustice, and argues that the framework of human rights norms provides an approach to environmental governance which can help to minimise injustice and promote the interests of those groups who are most adversely affected. Further, it suggests that the human rights enforcement mechanisms which exist at international law could be utilised to lend more weight to claims for more equitable environmental policies.
Resumo:
Emotional processes modulate the size of the eyeblink startle reflex in a picture-viewing paradigm, but it is unclear whether emotional processes are responsible for blink modulation in human conditioning. Experiment 1 involved an aversive differential conditioning phase followed by an extinction phase in which acoustic startle probes were presented during CS+, CS-, and intertrial intervals. Valence ratings and affective priming showed the CS+ was unpleasant postacquisition. Blink startle magnitude was larger during CS+ than during CS-. Experiment 2 used the same design in two groups trained with pleasant or unpleasant pictorial USs. Ratings and affective priming indicated that the CS+ had become pleasant or unpleasant in the respective group. Regardless of CS valence, blink startle was larger during CS+ than CS- in both groups. Thus, startle was not modulated by CS valence.
Resumo:
Affect modulates the blink startle reflex in the picture-viewing paradigm, however, the process responsible for reflex modulation during conditional stimuli (CSs) that have acquired valence through affective conditioning remains unclear. In Experiment 1, neutral shapes (CSs) and valenced or neutral pictures (USs) were paired in a forward (CS → US) manner. Pleasantness ratings supported affective learning of positive and negative valence. Post-acquisition, blink reflexes were larger during the pleasant and unpleasant CSs than during the neutral CS. Rather than affect, attention or anticipatory arousal were suggested as sources of startle modulation. Experiment 2 confirmed that affective learning in the picture–picture paradigm was not affected by whether the CS preceded the US. Pleasantness ratings and affective priming revealed similar extents of affective learning following forward, backward or simultaneous pairings of CSs and USs. Experiment 3 utilized a backward conditioning procedure (US → CS) to minimize effects of US anticipation. Again, blink reflexes were larger during CSs paired with valenced USs regardless of US valence implicating attention rather than anticipatory arousal or affect as the process modulating startle in this paradigm.
Resumo:
The 21" century business environment is dominated by unprecedented change across a broad spectrum of social, economic, technological and cultural factors (Nowotny, Scott & Gibbons 2001). Among these, two broad trends -economic globalisation and rising knowledge intensity (Hart 2006)have come to distinguish organisational life. Under the weight of these transformational influences, the developed world, it seems, has arrived at a transformational moment. The far-reaching effects of the global financial crisis and its shadowy twin: the threat of a double dip recession, continue to exert an unsteadying influence on global and corporate finances. Growth in developed economies has slumped, share prices have declined, the market value of corporations has slipped and unemployment rates, in the vast majority of developed economies, have risen. Gross domestic product (GDP) growth has retreated from the strong growth experienced in the late 1990s to negative growth in 2009 and a sluggish and unsteady recovery in 2010. In response, the reach of Government in terms of its participation in markets has been extended, bringing with it the need to transition to new governance and regulatory arrangements. Ongoing concerns regarding the pace and sustainability of the recovery remains a front-of-mind concern with bailouts, buybacks, borrowings and BP dominating news services: 'We are witnessing the reweaving of the social, political and economic fabric that binds our planet, with long-term consequences that are as or more profound than those of the industrial era' (Tapscott & Williams 2006, p. 59).
Resumo:
Eccentric exercise is the conservative treatment of choice for mid-portion Achilles tendinopathy. While there is a growing body of evidence supporting the medium to long term efficacy of eccentric exercise in Achilles tendinopathy treatment, very few studies have investigated the short term response of the tendon to eccentric exercise. Moreover, the mechanisms through which tendinopathy symptom resolution occurs remain to be established. The primary purpose of this thesis was to investigate the acute adaptations of the Achilles tendon to, and the biomechanical characteristics of, the eccentric exercise protocol used for Achilles tendinopathy rehabilitation and a concentric equivalent. The research was conducted with an orientation towards exploring potential mechanisms through which eccentric exercise may bring about a resolution of tendinopathy symptoms. Specifically, the morphology of tendinopathic and normal Achilles tendons was monitored using high resolution sonography prior to and following eccentric and concentric exercise, to facilitate comparison between the treatment of choice and a similar alternative. To date, the only proposed mechanism through which eccentric exercise is thought to result in symptom resolution is the increased variability in motor output force observed during eccentric exercise. This thesis expanded upon prior work by investigating the variability in motor output force recorded during eccentric and concentric exercises, when performed at two different knee joint angles, by limbs with and without symptomatic tendinopathy. The methodological phase of the research focused on establishing the reliability of measures of tendon thickness, tendon echogenicity, electromyography (EMG) of the Triceps Surae and the standard deviation (SD) and power spectral density (PSD) of the vertical ground reaction force (VGRF). These analyses facilitated comparison between the error in the measurements and experimental differences identified as statistically significant, so that the importance and meaning of the experimental differences could be established. One potential limitation of monitoring the morphological response of the Achilles tendon to exercise loading is that the Achilles tendon is continually exposed to additional loading as participants complete the walking required to carry out their necessary daily tasks. The specific purpose of the last experiment in the methodological phase was to evaluate the effect of incidental walking activity on Achilles tendon morphology. The results of this study indicated that walking activity could decrease Achilles tendon thickness (negative diametral strain) and that the decrease in thickness was dependent on both the amount of walking completed and the proximity of walking activity to the sonographic examination. Thus, incidental walking activity was identified as a potentially confounding factor for future experiments which endeavoured to monitor changes in tendon thickness with exercise loading. In the experimental phase of this thesis the thickness of Achilles tendons was monitored prior to and following isolated eccentric and concentric exercise. The initial pilot study demonstrated that eccentric exercise resulted in a greater acute decrease in Achilles tendon thickness (greater diametral strain) compared to an equivalent concentric exercise, in participants with no history of Achilles tendon pain. This experiment was then expanded to incorporate participants with unilateral Achilles tendinopathy. The major finding of this experiment was that the acute decrease in Achilles tendon thickness observed following eccentric exercise was modified by the presence of tendinopathy, with a smaller decrease (less diametral strain) noted for tendinopathic compared to healthy control tendon. Based on in vitro evidence a decrease in tendon thickness is believed to reflect extrusion of fluid from the tendon with loading. This process would appear to be limited by the presence of pathology and is hypothesised to be a result of the changes in tendon structure associated with tendinopathy. Load induced fluid movement may be important to the maintenance of tendon homeostasis and structure as it has the potential to enhance molecular movement and stimulate tendon remodelling. On this basis eccentric exercise may be more beneficial to the tendon than concentric exercise. Finally, EMG and motor output force variability (SD and PSD of VGRF) were investigated while participants with and without tendinopathy performed the eccentric and concentric exercises. Although between condition differences were identified as statistically significant for a number of force variability parameters, the differences were not greater than the limits of agreement for repeated measures. Consequently the meaning and importance of these findings were questioned. Interestingly, the EMG amplitude of all three Triceps Surae muscles did not vary with knee joint angle during the performance of eccentric exercise. This raises questions pertaining to the functional importance of performing the eccentric exercise protocol at each of the two knee joint angles as it is currently prescribed. EMG amplitude was significantly greater during concentric compared to eccentric muscle actions. Differences in the muscle activation patterns may result in different stress distributions within the tendon and be related to the different diametral strain responses observed for eccentric and concentric muscle actions.
Resumo:
The World Health Organization recommends that the majority of water monitoring laboratories in the world should test for E. coli daily since thermotolerant coliforms and E. coli are key indicators for risk assessment of recreational waters. Recently, we developed a new SNP method for typing E. coli strains, by which human-specific genotypes were identified. Here, we report the presence of these previously described specific SNP profiles in environmental water, sourced from the Coomera River, located on South East Queensland, Australia, over a period of two years. This study tested for the presence of human-specific E. coli to ascertain whether hydrologic and anthropogenic activity plays a key role in the pollution of the investigated watershed or whether the pollution is from other sources. We found six human-specific SNP profiles and one animal-specific SNP profile consistently across sampling sites and times. We have demonstrated that our SNP genotyping method is able to rapidly identify and characterise human- and animal-specific E. coli isolates in water sources.
Resumo:
Egon Brunswik proposed the concept of “representative design” for psychological experimentation, which has historically been overlooked or confused with another of Brunswik’s terms, ecological validity. In this article, we reiterate the distinction between these two important concepts and highlight the relevance of the term representative design for sports psychology, practice, and experimental design. We draw links with ideas on learning design in the constraints-led approach to motor learning and nonlinear pedagogy. We propose the adoption of a new term, representative learning design, to help sport scientists, experimental psychologists, and pedagogues recognize the potential application of Brunswik’s original concepts, and to ensure functionality and action fidelity in training and learning environments.
Is the public sector ready to collaborate? Human resource implications of collaborative Arrangements
Resumo:
Relational governance arrangements across agencies and sectors have become prevalent as a means for government to become more responsive and effective in addressing complex, large scale or ‘wicked’ problems. The primary characteristic of such ‘collaborative’ arrangements is the utilisation of the joint capacities of multiple organisations to achieve collaborative advantage, which Huxham (1993) defines as the attainment of creative outcomes that are beyond the ability of single agencies to achieve. Attaining collaborative advantage requires organisations to develop collaborative capabilities that prepare organisations for collaborative practice (Huxham, 1993b). Further, collaborations require considerable investment of staff effort that could potentially be used beneficially elsewhere by both the government and non-government organisations involved in collaboration (Keast and Mandell, 2010). Collaborative arrangements to deliver services therefore requires a reconsideration of the way in which resources, including human resources, are conceptualised and deployed as well as changes to both the structure of public service agencies and the systems and processes by which they operate (Keast, forthcoming). A main aim of academic research and theorising has been to explore and define the requisite characteristics to achieve collaborative advantage. Such research has tended to focus on definitional, structural (Turrini, Cristofoli, Frosini, & Nasi, 2009) and organisational (Huxham, 1993) aspects and less on the roles government plays within cross-organisational or cross-sectoral arrangements. Ferlie and Steane (2002) note that there has been a general trend towards management led reforms of public agencies including the HRM practices utilised. Such trends have been significantly influenced by New Public Management (NPM) ideology with limited consideration to the implications for HRM practice in collaborative, rather than market contexts. Utilising case study data of a suite of collaborative efforts in Queensland, Australia, collected over a decade, this paper presents an examination of the network roles government agencies undertake. Implications for HRM in public sector agencies working within networked arrangements are drawn and implications for job design, recruitment, deployment and staff development are presented. The paper also makes theoretical advances in our understanding of Strategic Human Resource Management (SHRM) in network settings. While networks form part of the strategic armoury of government, networks operate to achieve collaborative advantage. SHRM with its focus on competitive advantage is argued to be appropriate in market situations, however is not an ideal conceptualisation in network situations. Commencing with an overview of literature on networks and network effectiveness, the paper presents the case studies and methodology; provides findings from the case studies in regard to the roles of government to achieve collaborative advantage and implications for HRM practice are presented. Implications for SHRM are considered.
Resumo:
Background In contrast to pluripotent embryonic stem cells, adult stem cells have been considered to be multipotent, being somewhat more restricted in their differentiation capacity and only giving rise to cell types related to their tissue of origin. Several studies, however, have reported that bone marrow-derived mesenchymal stromal cells (MSCs) are capable of transdifferentiating to neural cell types, effectively crossing normal lineage restriction boundaries. Such reports have been based on the detection of neural-related proteins by the differentiated MSCs. In order to assess the potential of human adult MSCs to undergo true differentiation to a neural lineage and to determine the degree of homogeneity between donor samples, we have used RT-PCR and immunocytochemistry to investigate the basal expression of a range of neural related mRNAs and proteins in populations of non-differentiated MSCs obtained from 4 donors. Results The expression analysis revealed that several of the commonly used marker genes from other studies like nestin, Enolase2 and microtubule associated protein 1b (MAP1b) are already expressed by undifferentiated human MSCs. Furthermore, mRNA for some of the neural-related transcription factors, e.g. Engrailed-1 and Nurr1 were also strongly expressed. However, several other neural-related mRNAs (e.g. DRD2, enolase2, NFL and MBP) could be identified, but not in all donor samples. Similarly, synaptic vesicle-related mRNA, STX1A could only be detected in 2 of the 4 undifferentiated donor hMSC samples. More significantly, each donor sample revealed a unique expression pattern, demonstrating a significant variation of marker expression. Conclusion The present study highlights the existence of an inter-donor variability of expression of neural-related markers in human MSC samples that has not previously been described. This donor-related heterogeneity might influence the reproducibility of transdifferentiation protocols as well as contributing to the ongoing controversy about differentiation capacities of MSCs. Therefore, further studies need to consider the differences between donor samples prior to any treatment as well as the possibility of harvesting donor cells that may be inappropriate for transplantation strategies.
Resumo:
Aim: Electrospun nanofibers represent potent guidance substrates for nervous tissue repair. Development of nanofiber-based scaffolds for CNS repair requires, as a first step, an understanding of appropriate neural cell type-substrate interactions. Materials & methods: Astrocyte–nanofiber interactions (e.g., adhesion, proliferation, process extension and migration) were studied by comparing human neural progenitor-derived astrocytes (hNP-ACs) and a human astrocytoma cell line (U373) with aligned polycaprolactone (PCL) nanofibers or blended (25% type I collagen/75% PCL) nanofibers. Neuron–nanofiber interactions were assessed using a differentiated human neuroblastoma cell line (SH-SY5Y). Results & discussion: U373 cells and hNP-AC showed similar process alignment and length when associated with PCL or Type I collagen/PCL nanofibers. Cell adhesion and migration by hNP-AC were clearly improved by functionalization of nanofiber surfaces with type I collagen. Functionalized nanofibers had no such effect on U373 cells. Another clear difference between the U373 cells and hNP-AC interactions with the nanofiber substrate was proliferation; the cell line demonstrating strong proliferation, whereas the hNP-AC line showed no proliferation on either type of nanofiber. Long axonal growth (up to 600 µm in length) of SH-SY5Y neurons followed the orientation of both types of nanofibers even though adhesion of the processes to the fibers was poor. Conclusion: The use of cell lines is of only limited predictive value when studying cell–substrate interactions but both morphology and alignment of human astrocytes were affected profoundly by nanofibers. Nanofiber surface functionalization with collagen significantly improved hNP-AC adhesion and migration. Alternative forms of functionalization may be required for optimal axon–nanofiber interactions.