286 resultados para HIll, Kevin


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biochemical reactions underlying genetic regulation are often modelled as a continuous-time, discrete-state, Markov process, and the evolution of the associated probability density is described by the so-called chemical master equation (CME). However the CME is typically difficult to solve, since the state-space involved can be very large or even countably infinite. Recently a finite state projection method (FSP) that truncates the state-space was suggested and shown to be effective in an example of a model of the Pap-pili epigenetic switch. However in this example, both the model and the final time at which the solution was computed, were relatively small. Presented here is a Krylov FSP algorithm based on a combination of state-space truncation and inexact matrix-vector product routines. This allows larger-scale models to be studied and solutions for larger final times to be computed in a realistic execution time. Additionally the new method computes the solution at intermediate times at virtually no extra cost, since it is derived from Krylov-type methods for computing matrix exponentials. For the purpose of comparison the new algorithm is applied to the model of the Pap-pili epigenetic switch, where the original FSP was first demonstrated. Also the method is applied to a more sophisticated model of regulated transcription. Numerical results indicate that the new approach is significantly faster and extendable to larger biological models.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biologists are increasingly conscious of the critical role that noise plays in cellular functions such as genetic regulation, often in connection with fluctuations in small numbers of key regulatory molecules. This has inspired the development of models that capture this fundamentally discrete and stochastic nature of cellular biology - most notably the Gillespie stochastic simulation algorithm (SSA). The SSA simulates a temporally homogeneous, discrete-state, continuous-time Markov process, and of course the corresponding probabilities and numbers of each molecular species must all remain positive. While accurately serving this purpose, the SSA can be computationally inefficient due to very small time stepping so faster approximations such as the Poisson and Binomial τ-leap methods have been suggested. This work places these leap methods in the context of numerical methods for the solution of stochastic differential equations (SDEs) driven by Poisson noise. This allows analogues of Euler-Maruyuma, Milstein and even higher order methods to be developed through the Itô-Taylor expansions as well as similar derivative-free Runge-Kutta approaches. Numerical results demonstrate that these novel methods compare favourably with existing techniques for simulating biochemical reactions by more accurately capturing crucial properties such as the mean and variance than existing methods.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Almost all metapopulation modelling assumes that connectivity between patches is only a function of distance, and is therefore symmetric. However, connectivity will not depend only on the distance between the patches, as some paths are easy to traverse, while others are difficult. When colonising organisms interact with the heterogeneous landscape between patches, connectivity patterns will invariably be asymmetric. There have been few attempts to theoretically assess the effects of asymmetric connectivity patterns on the dynamics of metapopulations. In this paper, we use the framework of complex networks to investigate whether metapopulation dynamics can be determined by directly analysing the asymmetric connectivity patterns that link the patches. Our analyses focus on “patch occupancy” metapopulation models, which only consider whether a patch is occupied or not. We propose three easily calculated network metrics: the “asymmetry” and “average path strength” of the connectivity pattern, and the “centrality” of each patch. Together, these metrics can be used to predict the length of time a metapopulation is expected to persist, and the relative contribution of each patch to a metapopulation’s viability. Our results clearly demonstrate the negative effect that asymmetry has on metapopulation persistence. Complex network analyses represent a useful new tool for understanding the dynamics of species existing in fragmented landscapes, particularly those existing in large metapopulations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Self-segregation and compartimentalisation are observed experimentally to occur spontaneously on live membranes as well as reconstructed model membranes. It is believed that many of these processes are caused or supported by anomalous diffusive behaviours of biomolecules on membranes due to the complex and heterogeneous nature of these environments. These phenomena are on the one hand of great interest in biology, since they may be an important way for biological systems to selectively localize receptors, regulate signaling or modulate kinetics; and on the other, they provide an inspiration for engineering designs that mimick natural systems. We present an interactive software package we are developing for the purpose of simulating such processes numerically using a fundamental Monte Carlo approach. This program includes the ability to simulate kinetics and mass transport in the presence of either mobile or immobile obstacles and other relevant structures such as liquid-ordered lipid microdomains. We also present preliminary simulation results regarding the selective spatial localization and chemical kinetics modulating power of immobile obstacles on the membrane, obtained using the program.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider a continuous time model for election timing in a Majoritarian Parliamentary System where the government maintains a constitutional right to call an early election. Our model is based on the two-party-preferred data that measure the popularity of the government and the opposition over time. We describe the poll process by a Stochastic Differential Equation (SDE) and use a martingale approach to derive a Partial Differential Equation (PDE) for the government’s expected remaining life in office. A comparison is made between a three-year and a four-year maximum term and we also provide the exercise boundary for calling an election. Impacts on changes in parameters in the SDE, the probability of winning the election and maximum terms on the call exercise boundaries are discussed and analysed. An application of our model to the Australian Federal Election for House of Representatives is also given.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Experimental and theoretical studies have shown the importance of stochastic processes in genetic regulatory networks and cellular processes. Cellular networks and genetic circuits often involve small numbers of key proteins such as transcriptional factors and signaling proteins. In recent years stochastic models have been used successfully for studying noise in biological pathways, and stochastic modelling of biological systems has become a very important research field in computational biology. One of the challenge problems in this field is the reduction of the huge computing time in stochastic simulations. Based on the system of the mitogen-activated protein kinase cascade that is activated by epidermal growth factor, this work give a parallel implementation by using OpenMP and parallelism across the simulation. Special attention is paid to the independence of the generated random numbers in parallel computing, that is a key criterion for the success of stochastic simulations. Numerical results indicate that parallel computers can be used as an efficient tool for simulating the dynamics of large-scale genetic regulatory networks and cellular processes

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper gives a modification of a class of stochastic Runge–Kutta methods proposed in a paper by Komori (2007). The slight modification can reduce the computational costs of the methods significantly.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Experimental action potential (AP) recordings in isolated ventricular myoctes display significant temporal beat-to-beat variability in morphology and duration. Furthermore, significant cell-to-cell differences in AP also exist even for isolated cells originating from the same region of the same heart. However, current mathematical models of ventricular AP fail to replicate the temporal and cell-to-cell variability in AP observed experimentally. In this study, we propose a novel mathematical framework for the development of phenomenological AP models capable of capturing cell-to-cell and temporal variabilty in cardiac APs. A novel stochastic phenomenological model of the AP is developed, based on the deterministic Bueno-Orovio/Fentonmodel. Experimental recordings of AP are fit to the model to produce AP models of individual cells from the apex and the base of the guinea-pig ventricles. Our results show that the phenomenological model is able to capture the considerable differences in AP recorded from isolated cells originating from the location. We demonstrate the closeness of fit to the available experimental data which may be achieved using a phenomenological model, and also demonstrate the ability of the stochastic form of the model to capture the observed beat-to-beat variablity in action potential duration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent studies have shown that small genetic regulatory networks (GRNs) can be evolved in silico displaying certain dynamics in the underlying mathematical model. It is expected that evolutionary approaches can help to gain a better understanding of biological design principles and assist in the engineering of genetic networks. To take the stochastic nature of GRNs into account, our evolutionary approach models GRNs as biochemical reaction networks based on simple enzyme kinetics and simulates them by using Gillespie’s stochastic simulation algorithm (SSA). We have already demonstrated the relevance of considering intrinsic stochasticity by evolving GRNs that show oscillatory dynamics in the SSA but not in the ODE regime. Here, we present and discuss first results in the evolution of GRNs performing as stochastic switches.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Resolving a noted open problem, we show that the Undirected Feedback Vertex Set problem, parameterized by the size of the solution set of vertices, is in the parameterized complexity class Poly(k), that is, polynomial-time pre-processing is sufficient to reduce an initial problem instance (G, k) to a decision-equivalent simplified instance (G', k') where k' � k, and the number of vertices of G' is bounded by a polynomial function of k. Our main result shows an O(k11) kernelization bound.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider time-space fractional reaction diffusion equations in two dimensions. This equation is obtained from the standard reaction diffusion equation by replacing the first order time derivative with the Caputo fractional derivative, and the second order space derivatives with the fractional Laplacian. Using the matrix transfer technique proposed by Ilic, Liu, Turner and Anh [Fract. Calc. Appl. Anal., 9:333--349, 2006] and the numerical solution strategy used by Yang, Turner, Liu, and Ilic [SIAM J. Scientific Computing, 33:1159--1180, 2011], the solution of the time-space fractional reaction diffusion equations in two dimensions can be written in terms of a matrix function vector product $f(A)b$ at each time step, where $A$ is an approximate matrix representation of the standard Laplacian. We use the finite volume method over unstructured triangular meshes to generate the matrix $A$, which is therefore non-symmetric. However, the standard Lanczos method for approximating $f(A)b$ requires that $A$ is symmetric. We propose a simple and novel transformation in which the standard Lanczos method is still applicable to find $f(A)b$, despite the loss of symmetry. Numerical results are presented to verify the accuracy and efficiency of our newly proposed numerical solution strategy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Major construction sites in Australia have an above average presence of ethnic minorities. These groups and the interfaces between them require effective management in order to meet the social imperatives of sustainable design and construction. A survey of 1155 workers and 204 managers on Sydney construction sites respectively, found a significant level of normalisation of negative forms of cross cultural interaction. Yet it was also found that anti-racism programs are not currently a management priority and that they generally lack sophisticated community relations aspects. This paper presents the results of a desk-top study of leading global companies within and outside the construction sector which have won international awards and recognition for their cultural diversity strategies. A key insight is that the companies profiled see diversity as a key resource and as an opportunity rather than a risk which is best harnessed through long-term and on-going commitment of senior management. These leading companies also recognise that cultural diversity strategies operate at three levels - in terms of its relationship with its own workforce; its relationship with its clients and; its relationships with the communities in which it operates - and if properly managed it can be a source of competitive advantage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The relationship between radiologic union and clinical outcome in thoracoscopic scoliosis surgery is not clear, as apparent non-union of a spinal fusion does not always correspond to a poor clinical result. The aim of this study was to evaluate CT fusion rates 24 months after thoracoscopic anterior scoliosis surgery, and to explore the relationship between fusion scores and; (i) rod diameter, (ii) graft type, (iii) fusion level, (iv) occurrence of post-operative implant failure, and (v) lateral position of the fusion mass in the intervertebral disc space. We propose that moderate fusion scores on the Sucato scale secure successful clinical outcomes in thoracoscopic scoliosis surgery.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Emergency Health Services (EHS), encompassing hospital-based Emergency Departments (ED) and pre-hospital ambulance services, are a significant and high profile component of Australia’s health care system and congestion of these, evidenced by physical overcrowding and prolonged waiting times, is causing considerable community and professional concern. This concern relates not only to Australia’s capacity to manage daily health emergencies but also the ability to respond to major incidents and disasters. EHS congestion is a result of the combined effects of increased demand for emergency care, increased complexity of acute health care, and blocked access to ongoing care (e.g. inpatient beds). Despite this conceptual understanding there is a lack of robust evidence to explain the factors driving increased demand, or how demand contributes to congestion, and therefore public policy responses have relied upon limited or unsound information. The Emergency Health Services Queensland (EHSQ) research program proposes to determine the factors influencing the growing demand for emergency health care and to establish options for alternative service provision that may safely meet patient’s needs. The EHSQ study is funded by the Australian Research Council (ARC) through its Linkage Program and is supported financially by the Queensland Ambulance Service (QAS). This monograph is part of a suite of publications based on the research findings that examines the existing literature, and current operational context. Literature was sourced using standard search approaches and a range of databases as well as a selection of articles cited in the reviewed literature. Public sources including the Australian Institute of Health and Welfare (AIHW), the Council of Ambulance Authorities (CAA) Annual Reports, Australian Bureau of Statistics (ABS) and Department of Health and Ageing (DoHA) were examined for trend data across Australia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Web service technology is increasingly being used to build various e-Applications, in domains such as e-Business and e-Science. Characteristic benefits of web service technology are its inter-operability, decoupling and just-in-time integration. Using web service technology, an e-Application can be implemented by web service composition — by composing existing individual web services in accordance with the business process of the application. This means the application is provided to customers in the form of a value-added composite web service. An important and challenging issue of web service composition, is how to meet Quality-of-Service (QoS) requirements. This includes customer focused elements such as response time, price, throughput and reliability as well as how to best provide QoS results for the composites. This in turn best fulfils customers’ expectations and achieves their satisfaction. Fulfilling these QoS requirements or addressing the QoS-aware web service composition problem is the focus of this project. From a computational point of view, QoS-aware web service composition can be transformed into diverse optimisation problems. These problems are characterised as complex, large-scale, highly constrained and multi-objective problems. We therefore use genetic algorithms (GAs) to address QoS-based service composition problems. More precisely, this study addresses three important subproblems of QoS-aware web service composition; QoS-based web service selection for a composite web service accommodating constraints on inter-service dependence and conflict, QoS-based resource allocation and scheduling for multiple composite services on hybrid clouds, and performance-driven composite service partitioning for decentralised execution. Based on operations research theory, we model the three problems as a constrained optimisation problem, a resource allocation and scheduling problem, and a graph partitioning problem, respectively. Then, we present novel GAs to address these problems. We also conduct experiments to evaluate the performance of the new GAs. Finally, verification experiments are performed to show the correctness of the GAs. The major outcomes from the first problem are three novel GAs: a penaltybased GA, a min-conflict hill-climbing repairing GA, and a hybrid GA. These GAs adopt different constraint handling strategies to handle constraints on interservice dependence and conflict. This is an important factor that has been largely ignored by existing algorithms that might lead to the generation of infeasible composite services. Experimental results demonstrate the effectiveness of our GAs for handling the QoS-based web service selection problem with constraints on inter-service dependence and conflict, as well as their better scalability than the existing integer programming-based method for large scale web service selection problems. The major outcomes from the second problem has resulted in two GAs; a random-key GA and a cooperative coevolutionary GA (CCGA). Experiments demonstrate the good scalability of the two algorithms. In particular, the CCGA scales well as the number of composite services involved in a problem increases, while no other algorithms demonstrate this ability. The findings from the third problem result in a novel GA for composite service partitioning for decentralised execution. Compared with existing heuristic algorithms, the new GA is more suitable for a large-scale composite web service program partitioning problems. In addition, the GA outperforms existing heuristic algorithms, generating a better deployment topology for a composite web service for decentralised execution. These effective and scalable GAs can be integrated into QoS-based management tools to facilitate the delivery of feasible, reliable and high quality composite web services.