430 resultados para HEALTH SCIENCES


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Multiple marker sets and models are currently available for assessing foot and ankle kinematics in gait. Despite the presence of such a wide variety of models, the reporting of methodological designs remains inconsistent and lacks clearly defined standards. This review highlights the variability found when reporting biomechanical model parameters, methodological design, and model reliability. Further, the review clearly demonstrates the need for a consensus of what methodological considerations to report in manuscripts, which focus on the topic of foot and ankle biomechanics. We propose five minimum reporting standards, that we believe will ensure the transparency of methods and begin to allow the community to move towards standard modelling practice. The strict adherence to these standards should ultimately improve the interpretation and clinical useability of foot and ankle marker sets and their corresponding models.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The complex interaction of the bones of the foot has been explored in detail in recent years, which has led to the acknowledgement in the biomechanics community that the foot can no longer be considered as a single rigid segment. With the advance of motion analysis technology it has become possible to quantify the biomechanics of simplified units or segments that make up the foot. Advances in technology coupled with reducing hardware prices has resulted in the uptake of more advanced tools available for clinical gait analysis. The increased use of these techniques in clinical practice requires defined standards for modelling and reporting of foot and ankle kinematics. This systematic review aims to provide a critical appraisal of commonly used foot and ankle marker sets designed to assess kinematics and thus provide a theoretical background for the development of modelling standards.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nursing personnel are consistently identified as one of the occupational groups most at risk of work-related musculoskeletal disorders. During the moving and handling of bariatric patients, the weight of the patient combined with atypical body mass contributes to a significant risk of injury to the care provider and patient. This is further compounded by the shape, mobility and co-operation of the patient. The aim of this study was determine user experiences and design requirements for mobile hoists with bariatric patients. Structured interviews were conducted with six experienced injury management staff from the Manual Task Services department of three hospitals in Adelaide, South Australia. All staff had experience in patient handling, the use of patient handling equipment and the provision of patient handling training. A series of open-ended questions were structured around five main themes: 1) patient factors; 2) building/vehicle space and design; 3) equipment and furniture; 4) communication; and 5) staff issues. Questions focussed on the use of mobile hoists for lifting and transferring bariatric patients. Interviews were supplemented with a walk-through of the hospital to view the types of mobile hoists used, and the location and storage of equipment. Across the three hospitals there were differing classification systems to define bariatric patients. Ensuring patient dignity, respect and privacy were viewed as important in the management and rehabilitation of bariatric patients. Storage and space constraints were considered factors restricting the use of mobile floor hoists, with ceiling hoists being the preferred method for patient transfers. When using mobile floor hoists, the forces required to push, pull and manoeuvre, as well as sudden unstable movements of the hoist were considered important risks factors giving rise to a risk of injury to the care provider. Record keeping and purchasing policies appeared to inhibit the effective use of patient handling equipment. The moving and handling of bariatric patients presents complex and challenging issues. A co-ordinated and collaborative approach for moving and handling bariatric patients is needed across the range of care providers. Designers must consider both user and patient requirements.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The graduated driver licensing (GDL) program in Queensland, Australia, was considerably enhanced in July 2007. This paper explores the compliance of young Learner and Provisional (intermediate) drivers with current GDL requirements and general road rules. Unsupervised driving, Learner logbook accuracy, and experiences of punishment avoidance were explored, along with speeding as a Provisional driver. Participants (609 females; M = 17.43 years) self-reported sociodemographic characteristics, driving behaviours and licensing experiences as Learners. A subset of participants (238 females, 105 males) completed another survey six months later exploring their Provisional behaviours and experiences. While the majority of the participants reported compliance with both the GDL requirements and general road rules such as stopping at red lights on their Learner licence; a considerable proportion reported speeding. Furthermore, they reported becoming less compliant during the Provisional phase, particularly with speed limits. Self-reported speeding was predicted by younger age at licensure, being in a relationship, driving unsupervised, submitting inaccurate Learner logbooks, and speeding as a Learner. Enforcement and education countermeasures should focus upon curtailing noncompliance, targeting speeding in particular. Novice drivers should be encouraged to comply with all road rules, including speed limits, and safe driving behaviours should be developed and reinforced during the Learner and early Provisional periods. Novice drivers have been found to model their parents’ driving, and parents are pivotal in regulating novice driving. It is vital young novice drivers and parents alike are encouraged to comply with all road rules, including GDL requirements.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In gait analysis, both shoe mounted and skin mounted markers have been used to quantify the movement of the foot inside the shoe. However, these models have not been demonstrated as reliable or accurate in shod conditions. The purpose of this study was to develop an accurate and reliable marker set to describe foot-shoe complex kinematics during stance phase.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Footwear is designed to reduce injury, and enhance performance. However, the effect footwear has on foot and ankle kinematics currently remains unknown. Acknowledging the need for improved understanding, multi-segment models of the foot-shoe complex need to be established to both describe and quantify the effect footwear has on the foot and ankle during stance phase of gait. The purpose of this study was to quantify how footwear alters the kinematics of the foot inside the shoe during stance phase of walking gait.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Finite element analyses of the human body in seated postures requires digital models capable of providing accurate and precise prediction of the tissue-level response of the body in the seated posture. To achieve such models, the human anatomy must be represented with high fidelity. This information can readily be defined using medical imaging techniques such as Magnetic Resonance Imaging (MRI) or Computed Tomography (CT). Current practices for constructing digital human models, based on the magnetic resonance (MR) images, in a lying down (supine) posture have reduced the error in the geometric representation of human anatomy relative to reconstructions based on data from cadaveric studies. Nonetheless, the significant differences between seated and supine postures in segment orientation, soft-tissue deformation and soft tissue strain create a need for data obtained in postures more similar to the application posture. In this study, we present a novel method for creating digital human models based on seated MR data. An adult-male volunteer was scanned in a simulated driving posture using a FONAR 0.6T upright MRI scanner with a T1 scanning protocol. To compensate for unavoidable image distortion near the edges of the study, images of the same anatomical structures were obtained in transverse and sagittal planes. Combinations of transverse and sagittal images were used to reconstruct the major anatomical features from the buttocks through the knees, including bone, muscle and fat tissue perimeters, using Solidworks® software. For each MR image, B-splines were created as contours for the anatomical structures of interest, and LOFT commands were used to interpolate between the generated Bsplines. The reconstruction of the pelvis, from MR data, was enhanced by the use of a template model generated in previous work CT images. A non-rigid registration algorithm was used to fit the pelvis template into the MR data. Additionally, MR image processing was conducted to both the left and the right sides of the model due to the intended asymmetric posture of the volunteer during the MR measurements. The presented subject-specific, three-dimensional model of the buttocks and thighs will add value to optimisation cycles in automotive seat development when used in simulating human interaction with automotive seats.

Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In 1999 Richards compared the accuracy of commercially available motion capture systems commonly used in biomechanics. Richards identified that in static tests the optical motion capture systems generally produced RMS errors of less than 1.0 mm. During dynamic tests, the RMS error increased to up to 4.2 mm in some systems. In the last 12 years motion capture systems have continued to evolve and now include high-resolution CCD or CMOS image sensors, wireless communication, and high full frame sampling frequencies. In addition to hardware advances, there have also been a number of advances in software, which includes improved calibration and tracking algorithms, real time data streaming, and the introduction of the c3d standard. These advances have allowed the system manufactures to maintain a high retail price in the name of advancement. In areas such as gait analysis and ergonomics many of the advanced features such as high resolution image sensors and high sampling frequencies are not required due to the nature of the task often investigated. Recently Natural Point introduced low cost cameras, which on face value appear to be suitable as at very least a high quality teaching tool in biomechanics and possibly even a research tool when coupled with the correct calibration and tracking software. The aim of the study was therefore to compare both the linear accuracy and quality of angular kinematics from a typical high end motion capture system and a low cost system during a simple task.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Finite Element Modeling (FEM) has become a vital tool in the automotive design and development processes. FEM of the human body is a technique capable of estimating parameters that are difficult to measure in experimental studies with the human body segments being modeled as complex and dynamic entities. Several studies have been dedicated to attain close-to-real FEMs of the human body (Pankoke and Siefert 2007; Amann, Huschenbeth et al. 2009; ESI 2010). The aim of this paper is to identify and appraise the state of-the art models of the human body which incorporate detailed pelvis and/or lower extremity models. Six databases and search engines were used to obtain literature, and the search was limited to studies published in English since 2000. The initial search results identified 636 pelvis-related papers, 834 buttocks-related papers, 505 thigh-related papers, 927 femur-related papers, 2039 knee-related papers, 655 shank-related papers, 292 tibia-related papers, 110 fibula-related papers, 644 ankle related papers, and 5660 foot-related papers. A refined search returned 100 pelvis-related papers, 45 buttocks related papers, 65 thigh-related papers, 162 femur-related papers, 195 kneerelated papers, 37 shank-related papers, 80 tibia-related papers, 30 fibula-related papers and 102 ankle-related papers and 246 foot-related papers. The refined literature list was further restricted by appraisal against a modified LOW appraisal criteria. Studies with unclear methodologies, with a focus on populations with pathology or with sport related dynamic motion modeling were excluded. The final literature list included fifteen models and each was assessed against the percentile the model represents, the gender the model was based on, the human body segment/segments included in the model, the sample size used to develop the model, the source of geometric/anthropometric values used to develop the model, the posture the model represents and the finite element solver used for the model. The results of this literature review provide indication of bias in the available models towards 50th percentile male modeling with a notable concentration on the pelvis, femur and buttocks segments.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work a biomechanical model is used for simulation of muscle forces necessary to maintain the posture in a car seat under different support conditions.