261 resultados para G1 Phase
Resumo:
The paper presents an improved Phase-Locked Loop (PLL) for measuring the fundamental frequency and selective harmonic content of a distorted signal. This information can be used by grid interfaced devices and harmonic compensators. The single-phase structure is based on the Synchronous Reference Frame (SRF) PLL. The proposed PLL needs only a limited number of harmonic stages by incorporating Moving Average Filters (MAF) for eliminating the undesired harmonic content at each stage. The frequency dependency of MAF in effective filtering of undesired harmonics is also dealt with by a proposed method for adaptation to frequency variations of input signal. The method is suitable for high sampling rates and a wide frequency measurement range. Furthermore, an extended model of this structure is proposed which includes the response to both the frequency and phase angle variations. The proposed algorithm is simulated and verified using Hardware-in-the-Loop (HIL) testing.
Resumo:
PURPOSE: Previous research demonstrating that specific performance outcome goals can be achieved in different ways is functionally significant for springboard divers whose performance environment can vary extensively. This body of work raises questions about the traditional approach of balking (terminating the takeoff) by elite divers aiming to perform only identical, invariant movement patterns during practice. METHOD: A 12-week training program (2 times per day; 6.5 hr per day) was implemented with 4 elite female springboard divers to encourage them to adapt movement patterns under variable takeoff conditions and complete intended dives, rather than balk. RESULTS: Intraindividual analyses revealed small increases in variability in the board-work component of each diver's pretraining and posttraining program reverse-dive takeoffs. No topological differences were observed between movement patterns of dives completed pretraining and posttraining. Differences were noted in the amount of movement variability under different training conditions (evidenced by higher normalized root mean square error indexes posttraining). An increase in the number of completed dives (from 78.91%-86.84% to 95.59%-99.29%) and a decrease in the frequency of balked takeoffs (from 13.16%-19.41% to 0.63%-4.41%) showed that the elite athletes were able to adapt their behaviors during the training program. These findings coincided with greater consistency in the divers' performance during practice as scored by qualified judges. CONCLUSION: Results suggested that on completion of training, athletes were capable of successfully adapting their movement patterns under more varied takeoff conditions to achieve greater consistency and stability of performance outcomes.
Resumo:
Scientists have injected endotoxin into animals to investigate and understand various pathologies and novel therapies for several decades. Recent observations have shown that there is selective susceptibility to Escherichia coli lipopolysaccharide (LPS) endotoxin in sheep, despite having similar breed characteristics. The reason behind this difference is unknown, and has prompted studies aiming to explain the variation by proteogenomic characterisation of circulating acute phase biomarkers. It is hypothesised that genetic trait, biochemical, immunological and inflammation marker patterns contribute in defining and predicting mammalian response to LPS. This review discusses the effects of endotoxin and host responses, genetic basis of innate defences, activation of the acute phase response (APR) following experimental LPS challenge, and the current approaches employed in detecting novel biomarkers including acute phase proteins (APP) and micro-ribonucleic acids (miRNAs) in serum or plasma. miRNAs are novel targets for elucidating molecular mechanisms of disease because of their differential expression during pathological, and in healthy states. Changes in miRNA profiles during a disease challenge may be reflected in plasma. Studies show that gel-based two-dimensional electrophoresis (2-DE) coupled with either matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS) or liquid chromatography-mass spectrometry (LC-MS/MS) are currently the most used methods for proteome characterisation. Further evidence suggests that proteomic investigations are preferentially shifting from 2-DE to non-gel based LC-MS/MS coupled with data extraction by sequential window acquisition of all theoretical fragment-ion spectra (SWATH) approaches that are able to identify a wider range of proteins. Enzyme-linked immunosorbent assay (ELISA), quantitative real-time polymerase chain reaction (qRT-PCR), and most recently proteomic methods have been used to quantify low abundance proteins such as cytokines. qRT-PCR and next generation sequencing (NGS) are used for the characterisation of miRNA. Proteogenomic approaches for detecting APP and novel miRNA profiling are essential in understanding the selective resistance to endotoxin in sheep. The results of these methods could help in understanding similar pathology in humans. It might also be helpful in the development of physiological and diagnostic screening assays for determining experimental inclusion and endpoints, and in clinical trials in future
Resumo:
BACKGROUND AND OBJECTIVE: Idiopathic pulmonary fibrosis (IPF) is a degenerative disease characterized by fibrosis following failed epithelial repair. Mesenchymal stromal cells (MSC), a key component of the stem cell niche in bone marrow and possibly other organs including lung, have been shown to enhance epithelial repair and are effective in preclinical models of inflammation-induced pulmonary fibrosis, but may be profibrotic in some circumstances. METHODS: In this single centre, non-randomized, dose escalation phase 1b trial, patients with moderately severe IPF (diffusing capacity for carbon monoxide (DLCO ) ≥ 25% and forced vital capacity (FVC) ≥ 50%) received either 1 × 10(6) (n = 4) or 2 × 10(6) (n = 4) unrelated-donor, placenta-derived MSC/kg via a peripheral vein and were followed for 6 months with lung function (FVC and DLCO ), 6-min walk distance (6MWD) and computed tomography (CT) chest. RESULTS: Eight patients (4 female, aged 63.5 (57-75) years) with median (interquartile range) FVC 60 (52.5-74.5)% and DLCO 34.5 (29.5-40)% predicted were treated. Both dose schedules were well tolerated with only minor and transient acute adverse effects. MSC infusion was associated with a transient (1% (0-2%)) fall in SaO2 after 15 min, but no changes in haemodynamics. At 6 months FVC, DLCO , 6MWD and CT fibrosis score were unchanged compared with baseline. There was no evidence of worsening fibrosis. CONCLUSIONS: Intravenous MSC administration is feasible and has a good short-term safety profile in patients with moderately severe IPF.
Resumo:
Background/Aim. Mesenchymal stromal cells (MSCs) have been utilised in many clinical trials as an experimental treatment in numerous clinical settings. Bone marrow remains the traditional source tissue for MSCs but is relatively hard to access in large volumes. Alternatively, MSCs may be derived from other tissues including the placenta and adipose tissue. In an initial study no obvious differences in parameters such as cell surface phenotype, chemokine receptor display, mesodermal differentiation capacity or immunosuppressive ability, were detected when we compared human marrow derived- MSCs to human placenta-derived MSCs. The aim of this study was to establish and evaluate a protocol and related processes for preparation placenta-derived MSCs for early phase clinical trials. Methods. A full-term placenta was taken after delivery of the baby as a source of MSCs. Isolation, seeding, incubation, cryopreservation of human placentaderived MSCs and used production release criteria were in accordance with the complex regulatory requirements applicable to Code of Good Manufacturing Practice manufacturing of ex vivo expanded cells. Results. We established and evaluated instructions for MSCs preparation protocol and gave an overview of the three clinical areas application. In the first trial, MSCs were co-transplanted iv to patient receiving an allogeneic cord blood transplant as therapy for treatmentrefractory acute myeloid leukemia. In the second trial, MSCs were administered iv in the treatment of idiopathic pulmonary fibrosis and without serious adverse effects. In the third trial, MSCs were injected directly into the site of tendon damage using ultrasound guidance in the treatment of chronic refractory tendinopathy. Conclusion. Clinical trials using both allogeneic and autologous cells demonstrated MSCs to be safe. A described protocol for human placenta-derived MSCs is appropriate for use in a clinical setting, relatively inexpensive and can be relatively easily adjusted to a different set of regulatory requirements, as applicable to early phase clinical trials.
Resumo:
Flow patterns and aerodynamic characteristics behind three side-by-side square cylinders has been found depending upon the unequal gap spacing (g1 = s1/d and g2 = s2/d) between the three cylinders and the Reynolds number (Re) using the Lattice Boltzmann method. The effect of Reynolds numbers on the flow behind three cylinders are numerically studied for 75 ≤ Re ≤ 175 and chosen unequal gap spacings such as (g1, g2) = (1.5, 1), (3, 4) and (7, 6). We also investigate the effect of g2 while keeping g1 fixed for Re = 150. It is found that a Reynolds number have a strong effect on the flow at small unequal gap spacing (g1, g2) = (1.5, 1.0). It is also found that the secondary cylinder interaction frequency significantly contributes for unequal gap spacing for all chosen Reynolds numbers. It is observed that at intermediate unequal gap spacing (g1, g2) = (3, 4) the primary vortex shedding frequency plays a major role and the effect of secondary cylinder interaction frequencies almost disappear. Some vortices merge near the exit and as a result small modulation found in drag and lift coefficients. This means that with the increase in the Reynolds numbers and unequal gap spacing shows weakens wakes interaction between the cylinders. At large unequal gap spacing (g1, g2) = (7, 6) the flow is fully periodic and no small modulation found in drag and lift coefficients signals. It is found that the jet flows for unequal gap spacing strongly influenced the wake interaction by varying the Reynolds number. These unequal gap spacing separate wake patterns for different Reynolds numbers: flip-flopping, in-phase and anti-phase modulation synchronized, in-phase and anti-phase synchronized. It is also observed that in case of equal gap spacing between the cylinders the effect of gap spacing is stronger than the Reynolds number. On the other hand, in case of unequal gap spacing between the cylinders the wake patterns strongly depends on both unequal gap spacing and Reynolds number. The vorticity contour visualization, time history analysis of drag and lift coefficients, power spectrum analysis of lift coefficient and force statistics are systematically discussed for all chosen unequal gap spacings and Reynolds numbers to fully understand this valuable and practical problem.
Resumo:
A method for determination of tricyclazole in water using solid phase extraction and high performance liquid chromatography (HPLC) with UV detection at 230nm and a mobile phase of acetonitrile:water (20:80, v/v) was developed. A performance comparison between two types of solid phase sorbents, the C18 sorbent of Supelclean ENVI-18 cartridge and the styrene-divinyl benzene copolymer sorbent of Sep-Pak PS2-Plus cartridge was conducted. The Sep-Pak PS2-Plus cartridges were found more suitable for extracting tricyclazole from water samples than the Supelclean ENVI-18 cartridges. For this cartridge, both methanol and ethyl acetate produced good results. The method was validated with good linearity and with a limit of detection of 0.008gL-1 for a 500-fold concentration through the SPE procedure. The recoveries of the method were stable at 80% and the precision was from 1.1-6.0% within the range of fortified concentrations. The validated method was also applied to measure the concentrations of tricyclazole in real paddy water.
Resumo:
The goal of this article is to provide a new design framework and its corresponding estimation for phase I trials. Existing phase I designs assign each subject to one dose level based on responses from previous subjects. Yet it is possible that subjects with neither toxicity nor efficacy responses can be treated at higher dose levels, and their subsequent responses to higher doses will provide more information. In addition, for some trials, it might be possible to obtain multiple responses (repeated measures) from a subject at different dose levels. In this article, a nonparametric estimation method is developed for such studies. We also explore how the designs of multiple doses per subject can be implemented to improve design efficiency. The gain of efficiency from "single dose per subject" to "multiple doses per subject" is evaluated for several scenarios. Our numerical study shows that using "multiple doses per subject" and the proposed estimation method together increases the efficiency substantially.
Resumo:
Stallard (1998, Biometrics 54, 279-294) recently used Bayesian decision theory for sample-size determination in phase II trials. His design maximizes the expected financial gains in the development of a new treatment. However, it results in a very high probability (0.65) of recommending an ineffective treatment for phase III testing. On the other hand, the expected gain using his design is more than 10 times that of a design that tightly controls the false positive error (Thall and Simon, 1994, Biometrics 50, 337-349). Stallard's design maximizes the expected gain per phase II trial, but it does not maximize the rate of gain or total gain for a fixed length of time because the rate of gain depends on the proportion: of treatments forwarding to the phase III study. We suggest maximizing the rate of gain, and the resulting optimal one-stage design becomes twice as efficient as Stallard's one-stage design. Furthermore, the new design has a probability of only 0.12 of passing an ineffective treatment to phase III study.
Resumo:
The purpose of a phase I trial in cancer is to determine the level (dose) of the treatment under study that has an acceptable level of adverse effects. Although substantial progress has recently been made in this area using parametric approaches, the method that is widely used is based on treating small cohorts of patients at escalating doses until the frequency of toxicities seen at a dose exceeds a predefined tolerable toxicity rate. This method is popular because of its simplicity and freedom from parametric assumptions. In this payer, we consider cases in which it is undesirable to assume a parametric dose-toxicity relationship. We propose a simple model-free approach by modifying the method that is in common use. The approach assumes toxicity is nondecreasing with dose and fits an isotonic regression to accumulated data. At any point in a trial, the dose given is that with estimated toxicity deemed closest to the maximum tolerable toxicity. Simulations indicate that this approach performs substantially better than the commonly used method and it compares favorably with other phase I designs.
Resumo:
Single layered transition metal dichalcogenides have attracted tremendous research interest due to their structural phase diversities. By using a global optimization approach, we have discovered a new phase of transition metal dichalcogenides (labelled as T′′), which is confirmed to be energetically, dynamically and kinetically stable by our first-principles calculations. The new T′′ MoS2 phase exhibits an intrinsic quantum spin Hall (QSH) effect with a nontrivial gap as large as 0.42 eV, suggesting that a two-dimensional (2D) topological insulator can be achieved at room temperature. Most interestingly, there is a topological phase transition simply driven by a small tensile strain of up to 2%. Furthermore, all the known MX2 (M = Mo or W; X = S, Se or Te) monolayers in the new T′′ phase unambiguously display similar band topologies and strain controlled topological phase transitions. Our findings greatly enrich the 2D families of transition metal dichalcogenides and offer a feasible way to control the electronic states of 2D topological insulators for the fabrication of high-speed spintronics devices.
Resumo:
The results of the pilot demonstrated that a pharmacist delivered vaccinations services is feasible in community pharmacy and is safe and effective. The accessibility of the pharmacist across the influenza season provided the opportunity for more people to be vaccinated, particularly those who had never received an influenza vaccine before. Patient satisfaction was extremely high with nearly all patients happy to recommend the service and to return again next year. Factors critical to the success of the service were: 1. Appropriate facilities 2. Competent pharmacists 3. Practice and decision support tools 4. In-‐store implementation support We demonstrated in the pilot that vaccination recipients preferred a private consultation area. As the level of privacy afforded to the patients increased (private room vs. booth), so did the numbers of patients vaccinated. We would therefore recommend that the minimum standard of a private consultation room or closed-‐in booth, with adequate space for multiple chairs and a work / consultation table be considered for provision of any vaccination services. The booth or consultation room should be used exclusively for delivering patient services and should not contain other general office equipment, nor be used as storage for stock. The pilot also demonstrated that a pharmacist-‐specific training program produced competent and confident vaccinators and that this program can be used to retrofit the profession with these skills. As vaccination is within the scope of pharmacist practice as defined by the Pharmacy Board of Australia, there is potential for the universities to train their undergraduates with this skill and provide a pharmacist vaccination workforce in the near future. It is therefore essential to explore appropriate changes to the legislation to facilitate pharmacists’ practice in this area. Given the level of pharmacology and medicines knowledge of pharmacists, combined with their new competency of providing vaccinations through administering injections, it is reasonable to explore additional vaccines that pharmacists could administer in the community setting. At the time of writing, QPIP has already expanded into Phase 2, to explore pharmacists vaccinating for whooping cough and measles. Looking at the international experience of pharmacist delivered vaccination, we would recommend considering expansion to other vaccinations in the future including travel vaccinations, HPV and selected vaccinations to those under the age of 18 years. Overall the results of the QPIP implementation have demonstrated that an appropriately trained pharmacist can deliver safely and effectively influenza vaccinations to adult patients in the community. The QPIP showed the value that the accessibility of pharmacists brings to public health outcomes through improved access to vaccinations and the ability to increase immunisation rates in the general population. Over time with the expansion of pharmacist vaccination services this will help to achieve more effective herd immunity for some of the many diseases which currently have suboptimal immunisation rates.
Resumo:
An alternative approach to digital PWM generation uses an accumulator rather than a counter to generate the carrier. This offers several advantages. The resolution and gain of the pulse width modulator remain constant regardless of the module clock frequency and PWM output frequency. The PWM resolution also becomes fixed at the register width. Even at high PWM frequencies, the resolution remains high when averaged over a number of PWM cycles. An inherent dithering of the PWM waveform introduced over successive cycles blurs the switching spectra without distorting the modulating waveform. The technique also lends itself to easily generating several phase shifted PWM waveforms suitable for multilevel converter modulation. Several example waveforms generated using both simulation and FPGA hardware are presented.
Resumo:
The National Energy Efficient Building Project (NEEBP) Phase One report, published in December 2014, investigated “process issues and systemic failures” in the administration of the energy performance requirements in the National Construction Code. It found that most stakeholders believed that under-compliance with these requirements is widespread across Australia, with similar issues being reported in all states and territories. The report found that many different factors were contributing to this outcome and, as a result, many recommendations were offered that together would be expected to remedy the systemic issues reported. To follow up on this Phase 1 report, three additional projects were commissioned as part of Phase 2 of the overall NEEBP project. This Report deals with the development and piloting of an Electronic Building Passport (EBP) tool – a project undertaken jointly by pitt&sherry and a team at the Queensland University of Technology (QUT) led by Dr Wendy Miller. The other Phase 2 projects cover audits of Class 1 buildings and issues relating to building alterations and additions. The passport concept aims to provide all stakeholders with (controlled) access to the key documentation and information that they need to verify the energy performance of buildings. This trial project deals with residential buildings but in principle could apply to any building type. Nine councils were recruited to help develop and test a pilot electronic building passport tool. The participation of these councils – across all states – enabled an assessment of the extent to which these councils are currently utilising documentation; to track the compliance of residential buildings with the energy performance requirements in the National Construction Code (NCC). Overall we found that none of the participating councils are currently compiling all of the energy performance-related documentation that would demonstrate code compliance. The key reasons for this include: a major lack of clarity on precisely what documentation should be collected; cost and budget pressures; low public/stakeholder demand for the documentation; and a pragmatic judgement that non-compliance with any regulated documentation requirements represents a relatively low risk for them. Some councils reported producing documentation, such as certificates of final completion, only on demand, for example. Only three of the nine council participants reported regularly conducting compliance assessments or audits utilising this documentation and/or inspections. Overall we formed the view that documentation and information tracking processes operating within the building standards and compliance system are not working to assure compliance with the Code’s energy performance requirements. In other words the Code, and its implementation under state and territory regulatory processes, is falling short as a ‘quality assurance’ system for consumers. As a result it is likely that the new housing stock is under-performing relative to policy expectations, consuming unnecessary amounts of energy, imposing unnecessarily high energy bills on occupants, and generating unnecessary greenhouse gas emissions. At the same time, Councils noted that the demand for documentation relating to building energy performance was low. All the participant councils in the EBP pilot agreed that documentation and information processes need to work more effectively if the potential regulatory and market drivers towards energy efficient homes are to be harnessed. These findings are fully consistent with the Phase 1 NEEBP report. It was also agreed that an EBP system could potentially play an important role in improving documentation and information processes. However, only one of the participant councils indicated that they might adopt such a system on a voluntary basis. The majority felt that such a system would only be taken up if it were: - A nationally agreed system, imposed as a mandatory requirement under state or national regulation; - Capable of being used by multiple parties including councils, private certifiers, building regulators, builders and energy assessors in particular; and - Fully integrated into their existing document management systems, or at least seamlessly compatible rather than a separate, unlinked tool. Further, we note that the value of an EBP in capturing statistical information relating to the energy performance of buildings would be much greater if an EBP were adopted on a nationally consistent basis. Councils were clear that a key impediment to the take up of an EBP system is that they are facing very considerable budget and staffing challenges. They report that they are often unable to meet all community demands from the resources available to them. Therefore they are unlikely to provide resources to support the roll out of an EBP system on a voluntary basis. Overall, we conclude from this pilot that the public good would be well served if the Australian, state and territory governments continued to develop and implement an Electronic Building Passport system in a cost-efficient and effective manner. This development should occur with detailed input from building regulators, the Australian Building Codes Board (ABCB), councils and private certifiers in the first instance. This report provides a suite of recommendations (Section 7.2) designed to advance the development and guide the implementation of a national EBP system.
Resumo:
Research about disasters in tourism has emerged in earnest since the 1990s covering insights for preparedness and response. However, recently, authors have called for more systematic and holistic approaches to tourism disaster management research. To address this gap, this study adopted a public relations perspective to refocus attention to relationships and stakeholder expectations of destination communities across multiple phases of disaster management. The authors used a mixed method approach and developed a battery of disaster management attributes by conducting interviews and analyzing industry documents and the extant literature. These attributes formed part of a survey of tourism businesses. Exploratory factor analysis resulted in a two factor solution: - i) business disaster preparedness, and; - ii) destination disaster response and recovery. Findings also show that participants reported a gap between the importance and destination performance of these attributes. In particular, tourism businesses perceived destinations did not adequately engage in disaster preparedness activities, which had implications for disaster response and recovery.