618 resultados para Environmental risks
Resumo:
Motorcyclists are the most crash-prone road-user group in many Asian countries including Singapore; however, factors influencing motorcycle crashes are still not well understood. This study examines the effects of various roadway characteristics, traffic control measures and environmental factors on motorcycle crashes at different location types including expressways and intersections. Using techniques of categorical data analysis, this study has developed a set of log-linear models to investigate multi-vehicle motorcycle crashes in Singapore. Motorcycle crash risks in different circumstances have been calculated after controlling for the exposure estimated by the induced exposure technique. Results show that night-time influence increases crash risks of motorcycles particularly during merging and diverging manoeuvres on expressways, and turning manoeuvres at intersections. Riders appear to exercise more care while riding on wet road surfaces particularly during night. Many hazardous interactions at intersections tend to be related to the failure of drivers to notice a motorcycle as well as to judge correctly the speed/distance of an oncoming motorcycle. Road side conflicts due to stopping/waiting vehicles and interactions with opposing traffic on undivided roads have been found to be as detrimental factors on motorcycle safety along arterial, main and local roads away from intersections. Based on the findings of this study, several targeted countermeasures in the form of legislations, rider training, and safety awareness programmes have been recommended.
Resumo:
The fatality and injury rate of motorcyclists per registered vehicle are higher than those of other motor vehicles by 13 and 7 times respectively. The crash involvement rate of motorcyclists as a victim party is 58% at intersections and as an offending party is 67% at expressways. Previous research efforts showed that the motorcycle safety programs are not very effective in improving motorcycle safety. This is perhaps due to inefficient design of safety program as specific causal factors may not be well explored. The objective of this study is to propose more sophisticated countermeasures and awareness programs for improving motorcycle safety after analyzing specific causal factors for motorcycle crashes at intersections and expressways. Methodologically this study applies the binary logistic model to explore the at-fault or not-at-fault crash involvement of motorcyclists at those locations. A number of explanatory variables representing roadway characteristics, environmental factors, motorcycle descriptions, and rider demographics have been evaluated. Results shows that the night time crash occurrence, presence of red light camera, lane position, rider age, licence class, and multivehicle collision significantly affect the fault of motorcyclists involved in crashes at intersections. On the other hand, the night time crash occurrence, lane position, speed limit, rider age, licence class, engine capacity, riding with pillion passenger, foreign registered motorcycles, and multivehicle collision has been found to be significant at expressways. Legislate to wear reflective clothes and using reflective markings on the motorcycles and helmets are suggested as an effective countermeasure for reducing their vulnerability. The red light cameras at intersections reduce the vulnerability of motorcycles and hence motorcycle flow and motorcycle crashes should be considered during installation of red light cameras. At signalized intersections, motorcyclists may be taught to follow correct movement and queuing rather than weaving through the traffic as it leads them to become victims of other motorists. The riding simulators in the training centers can be useful to demonstrate the proper movement and queuing at junctions. Riding with pillion passenger and excess speed at expressways are found to significantly influence the at at-fault crash involvement of the motorcyclists. Hence the motorcyclists should be advised to concentrate more on riding while riding with pillion passenger and encouraged to avoid excess speed at expressways. Very young and very older group of riders are found to be at-fault than middle aged groups. Hence this group of riders should be targeted for safety improvement. This can be done by arranging safety talks and programs in motorcycling clubs in colleges and universities as well as community riding clubs with high proportion of elderly riders. It is recommended that the driving centers may use the findings of this study to include in licensure program to make motorcyclists more aware of the different factors which expose the motorcyclists to crash risks so that more defensive riding may be needed.
Resumo:
Sustainability, smartness and safety are three sole components of a modern transportation system. The objective of this study is to introduce a modern transportation system in the light of a 3‘S’ approach: sustainable, smart and safe. In particular this paper studies the transportation system of Singapore to address how this system is progressing in this three-pronged approach towards a modern transportation system. While sustainability targets environmental justice and social equity without compromising economical efficiency, smartness incorporates qualities like automated sensing, processing and decision making, and action-taking into the transportation system. Since a system cannot be viable without being safe, the safety of the modern transportation system aims minimizing crash risks of all users including motorists, motorcyclists, pedestrians, and bicyclists. Various policy implications and technology applications inside the transportation system of Singapore are discussed to illustrate a modern transportation system within the framework of the 3‘S’ model.
Resumo:
Navigational collisions are a major safety concern in many seaports. Despite the recent advances in port navigational safety research, little is known about harbor pilot’s perception of collision risks in anchorages. This study attempts to model such risks by employing a hierarchical ordered probit model, which is calibrated by using data collected through a risk perception survey conducted on Singapore port pilots. The hierarchical model is found to be useful to account for correlations in risks perceived by individual pilots. Results show higher perceived risks in anchorages attached to intersection, local and international fairway; becoming more critical at night. Lesser risks are perceived in anchorages featuring shoreline in boundary, higher water depth, lower density of stationary ships, cardinal marks and isolated danger marks. Pilotage experience shows a negative effect on perceived risks. This study indicates that hierarchical modeling would be useful for treating correlations in navigational safety data.
Resumo:
The main factors affecting environmental sensitivity to degradation are soil, vegetation, climate and management, through either their intrinsic characteristics or by their interaction on the landscape. Different levels of degradation risks may be observed in response to particular combinations of the aforementioned factors. For instance, the combination of inappropriate management practices and intrinsically weak soil conditions will result in a severe degradation of the environment, while the combination of the same type of management with better soil conditions may lead to negligible degradation.The aim of this study was to identify factors and their impact on land degradation processes in three areas of the Basilicata region (southern Italy) using a procedure that couples environmental indices, GIS and crop-soil simulation models. Areas prone to desertification were first identified using the Environmental Sensitive Areas (ESA) procedure. An analysis for identifying the weight that each of the contributing factor (climate, soil, vegetation, management) had on the ESA was carried out using GIS techniques. The SALUS model was successfully executed to identify the management practices that could lead to better soil conditions to enhance land use sustainability. The best management practices were found to be those that minimized soil disturbance and increased soil organic carbon. Two alternative scenarios with improved soil quality and subsequently improving soil water holding capacity were used as mitigation measures. The ESA were recalculated and the effects of the mitigation measures suggested by the model were assessed. The new ESA showed a significant reduction on land degradation.
Resumo:
Navigational collisions are one of the major safety concerns in many seaports. To address this safety concern, a comprehensive and structured method of collision risk management is necessary. Traditionally management of port water collision risks has been relied on historical collision data. However, this collision-data-based approach is hampered by several shortcomings, such as randomness and rarity of collision occurrence leading to obtaining insufficient number of samples for a sound statistical analysis, insufficiency in explaining collision causation, and reactive approach to safety. A promising alternative approach that overcomes these shortcomings is the navigational traffic conflict technique that uses traffic conflicts as an alternative to the collision data. This paper proposes a collision risk management method by utilizing the principles of this technique. This risk management method allows safety analysts to diagnose safety deficiencies in a proactive manner, which, consequently, has great potential for managing collision risks in a fast, reliable and efficient manner.
Resumo:
The temporal variations in CO2, CH4 and N2O fluxes were measured over two consecutive years from February 2007 to March 2009 from a subtropical rainforest in south-eastern Queensland, Australia, using an automated sampling system. A concurrent study using an additional 30 manual chambers examined the spatial variability of emissions distributed across three nearby remnant rainforest sites with similar vegetation and climatic conditions. Interannual variation in fluxes of all gases over the 2 years was minimal, despite large discrepancies in rainfall, whereas a pronounced seasonal variation could only be observed for CO2 fluxes. High infiltration, drainage and subsequent high soil aeration under the rainforest limited N2O loss while promoting substantial CH4 uptake. The average annual N2O loss of 0.5 ± 0.1 kg N2O-N ha−1 over the 2-year measurement period was at the lower end of reported fluxes from rainforest soils. The rainforest soil functioned as a sink for atmospheric CH4 throughout the entire 2-year period, despite periods of substantial rainfall. A clear linear correlation between soil moisture and CH4 uptake was found. Rates of uptake ranged from greater than 15 g CH4-C ha−1 day−1 during extended dry periods to less than 2–5 g CH4-C ha−1 day−1 when soil water content was high. The calculated annual CH4 uptake at the site was 3.65 kg CH4-C ha−1 yr−1. This is amongst the highest reported for rainforest systems, reiterating the ability of aerated subtropical rainforests to act as substantial sinks of CH4. The spatial study showed N2O fluxes almost eight times higher, and CH4 uptake reduced by over one-third, as clay content of the rainforest soil increased from 12% to more than 23%. This demonstrates that for some rainforest ecosystems, soil texture and related water infiltration and drainage capacity constraints may play a more important role in controlling fluxes than either vegetation or seasonal variability
Resumo:
Modern toxicology investigates a wide array of both old and new health hazards. Priority setting is needed to select agents for research from the plethora of exposure circumstances. The changing societies and a growing fraction of the aged have to be taken into consideration. A precise exposure assessment is of importance for risk estimation and regulation. Toxicology contributes to the exploration of pathomechanisms to specify the exposure metrics for risk estimation. Combined effects of co-existing agents are not yet sufficiently understood. Animal experiments allow a separate administration of agents which can not be disentangled by epidemiological means, but their value is limited for low exposure levels in many of today’s settings. As an experimental science, toxicology has to keep pace with the rapidly growing knowledge about the language of the genome and the changing paradigms in cancer development. During the pioneer era of assembling a working draft of the human genome, toxicogenomics has been developed. Gene and pathway complexity have to be considered when investigating gene–environment interactions. For a best conduct of studies, modern toxicology needs a close liaison with many other disciplines like epidemiology and bioinformatics.
Resumo:
Barmah Forest Virus (BFV) disease is the most rapidly emerging mosquito-borne disease in Australia. BFV transmission depends on factors such as climate, virus, vector and the human population. However, the impact of climatic and social factors on BFV remains to be determined. This paper provided an overview of current research and discusses the future research directions on the BFV transmission. These research findings could be regarded as an impetus towards BFV prevention and control strategies.
Resumo:
Environmental manipulation removes students from their everyday worlds to unfamiliar worlds, to facil- itate learning. This article reports that this strategy was effective when applied in a university design unit, using the tactic of immersion in the Second Life online virtual environment. The objective was for teams of stu- dents each to design a series of modules for an orbiting space station using supplied data. The changed and futuristic environment led the students to an important but previously unconsidered design decision which they were able to address in novel ways because of, rather than in spite of, the Second Life immersion.