638 resultados para Environment impacts
Resumo:
Hydrocarbon spills on roads are a major safety concern for the driving public and can have severe cost impacts both on pavement maintenance and to the economy through disruption to services. The time taken to clean-up spills and re-open roads in a safe driving condition is an issue of increasing concern given traffic levels on major urban arterials. Thus, the primary aim of the research was to develop a sorbent material that facilitates rapid clean-up of road spills. The methodology involved extensive research into a range of materials (organic, inorganic and synthetic sorbents), comprehensive testing in the laboratory, scale-up and field, and product design (i.e. concept to prototype). The study also applied chemometrics to provide consistent, comparative methods of sorbent evaluation and performance. In addition, sorbent materials at every stage were compared against a commercial benchmark. For the first time, the impact of diesel on asphalt pavement has been quantified and assessed in a systematic way. Contrary to conventional thinking and anecdotal observations, the study determined that the action of diesel on asphalt was quite rapid (i.e. hours rather than weeks or months). This significant finding demonstrates the need to minimise the impact of hydrocarbon spills and the potential application of the sorbent option. To better understand the adsorption phenomenon, surface characterisation techniques were applied to selected sorbent materials (i.e. sand, organo-clay and cotton fibre). Brunauer Emmett Teller (BET) and thermal analysis indicated that the main adsorption mechanism for the sorbents occurred on the external surface of the material in the diffusion region (sand and organo-clay) and/or capillaries (cotton fibre). Using environmental scanning electron microscopy (ESEM), it was observed that adsorption by the interfibre capillaries contributed to the high uptake of hydrocarbons by the cotton fibre. Understanding the adsorption mechanism for these sorbents provided some guidance and scientific basis for the selection of materials. The study determined that non-woven cotton mats were ideal sorbent materials for clean-up of hydrocarbon spills. The prototype sorbent was found to perform significantly better than the commercial benchmark, displaying the following key properties: • superior hydrocarbon pick-up from the road pavement; • high hydrocarbon retention capacity under an applied load; • adequate field skid resistance post treatment; • functional and easy to use in the field (e.g. routine handling, transportation, application and recovery); • relatively inexpensive to produce due to the use of raw cotton fibre and simple production process; • environmentally friendly (e.g. renewable materials, non-toxic to environment and operators, and biodegradable); and • rapid response time (e.g. two minutes total clean-up time compared with thirty minutes for reference sorbents). The major outcomes of the research project include: a) development of a specifically designed sorbent material suitable for cleaning up hydrocarbon spills on roads; b) submission of patent application (serial number AU2005905850) for the prototype product; and c) preparation of Commercialisation Strategy to advance the sorbent product to the next phase (i.e. R&D to product commercialisation).
Resumo:
In the current thesis, the reasons for the differential impact of Holocaust trauma on Holocaust survivors, and the differential intergenerational transmission of this trauma to survivors’ children and grandchildren were explored. A model specifically related to Holocaust trauma and its transmission was developed based on trauma, family systems and attachment theories as well as theoretical and anecdotal conjecture in the Holocaust literature. The Model of the Differential Impact of Holocaust Trauma across Three Generations was tested firstly by extensive meta-analyses of the literature pertaining to the psychological health of Holocaust survivors and their descendants and secondly via analysis of empirical study data. The meta-analyses reported in this thesis represent the first conducted with research pertaining to Holocaust survivors and grandchildren of Holocaust survivors. The meta-analysis of research conducted with children of survivors is the first to include both published and unpublished research. Meta-analytic techniques such as meta-regression and sub-set meta-analyses provided new information regarding the influence of a number of unmeasured demographic variables on the psychological health of Holocaust survivors and descendants. Based on the results of the meta-analyses it was concluded that Holocaust survivors and their children and grandchildren suffer from a statistically significantly higher level or greater severity of psychological symptoms than the general population. However it was also concluded that there is statistically significant variation in psychological health within the Holocaust survivor and descendant populations. Demographic variables which may explain a substantial amount of this variation have been largely under-assessed in the literature and so an empirical study was needed to clarify the role of demographics in determining survivor and descendant mental health. A total of 124 participants took part in the empirical study conducted for this thesis with 27 Holocaust survivors, 69 children of survivors and 28 grandchildren of survivors. A worldwide recruitment process was used to obtain these participants. Among the demographic variables assessed in the empirical study, aspects of the survivors’ Holocaust trauma (namely the exact nature of their Holocaust experiences, the extent of family bereavement and their country of origin) were found to be particularly potent predictors of not only their own psychological health but continue to be strongly influential in determining the psychological health of their descendants. Further highlighting the continuing influence of the Holocaust was the finding that number of Holocaust affected ancestors was the strongest demographic predictor of grandchild of survivor psychological health. Apart from demographic variables, the current thesis considered family environment dimensions which have been hypothesised to play a role in the transmission of the traumatic impact of the Holocaust from survivors to their descendants. Within the empirical study, parent-child attachment was found to be a key determinant in the transmission of Holocaust trauma from survivors to their children and insecure parent-child attachment continues to reverberate through the generations. In addition, survivors’ communication about the Holocaust and their Holocaust experiences to their children was found to be more influential than general communication within the family. Ten case studies (derived from the empirical study data set) are also provided; five Holocaust survivors, three children of survivors and two grandchildren of survivors. These cases add further to the picture of heterogeneity of the survivor and descendant populations in both experiences and adaptations. It is concluded that the legacy of the Holocaust continues to leave its mark on both its direct survivors and their descendants. Even two generations removed, the direct and indirect effects of the Holocaust have yet to be completely nullified. Research with Holocaust survivor families serves to highlight the differential impacts of state-based trauma and the ways in which its effects continue to be felt for generations. The revised and empirically tested Model of the Differential Impact of Holocaust Trauma across Three Generations presented at the conclusion of this thesis represents a further clarification of existing trauma theories as well as the first attempt at determining the relative importance of both cognitive, interpersonal/interfamilial interaction processes and demographic variables in post-trauma psychological health and transmission of traumatic impact.
Resumo:
Estimated 640,700 persons suffered a work-related injury or illness in 2009-2010 and 444 lost their lives as a result in 2008-2009, in Australia Very little is known about what proportion of accidents are directly attributable to the effects of AOD Anecdotal evidence highlights issues of AOD and its association with safety risk on construction sites
Resumo:
Background/Rationale Guided by the need-driven dementia-compromised behavior (NDB) model, this study examined influences of the physical environment on wandering behavior. Methods Using a descriptive, cross-sectional design, 122 wanderers from 28 long-term care (LTC) facilities were videotaped 10 to 12 times; data on wandering, light, sound, temperature and humidity levels, location, ambiance, and crowding were obtained. Associations between environmental variables and wandering were evaluated with chi-square and t tests; the model was evaluated using logistic regression. Results In all, 80% of wandering occurred in the resident’s own room, dayrooms, hallways, or dining rooms. When observed in other residents’ rooms, hallways, shower/baths, or off-unit locations, wanderers were likely (60%-92% of observations) to wander. The data were a good fit to the model overall (LR [logistic regression] χ2 (5) = 50.38, P < .0001) and by wandering type. Conclusions Location, light, sound, proximity of others, and ambiance are associated with wandering and may serve to inform environmental designs and care practices.
Resumo:
Nature Refuges encompass the second largest extent of protected area estate in Queensland. Major problems exist in the data capture, map presentation, data quality and integrity of these boundaries. The spatial accuracies/inaccuracies of the Nature Refuge administrative boundaries directly influence the ability to preserve valuable ecosystems by challenging negative environmental impacts on these properties. This research work is about supporting the Nature Refuge Programs efforts to secure Queensland’s natural and cultural values on private land by utilising GIS and its advanced functionalities. The research design organizes and enters Queensland’s Nature Refuge boundaries into a spatial environment. Survey quality data collection techniques such as the Global Positioning Systems (GPS) are investigated to capture Nature Refuge boundary information. Using the concepts of map communication GIS Cartography is utilised for the protected area plan design. New spatial datasets are generated facilitating the effectiveness of investigative data analysis. The geodatabase model developed by this study adds rich GIS behaviour providing the capability to store, query, and manipulate geographic information. It provides the ability to leverage data relationships and enforces topological integrity creating savings in customization and productivity. The final phase of the research design incorporates the advanced functions of ArcGIS. These functions facilitate building spatial system models. The geodatabase and process models developed by this research can be easily modified and the data relating to mining can be replaced by other negative environmental impacts affecting the Nature Refuges. Results of the research are presented as graphs and maps providing visual evidence supporting the usefulness of GIS as means for capturing, visualising and enhancing spatial quality and integrity of Nature Refuge boundaries.
Resumo:
Monotony has been identified as a contributing factor to road crashes. Drivers’ ability to react to unpredictable events deteriorates when exposed to highly predictable and uneventful driving tasks, such as driving on Australian rural roads, many of which are monotonous by nature. Highway design in particular attempts to reduce the driver’s task to a merely lane-keeping one. Such a task provides little stimulation and is monotonous, thus affecting the driver’s attention which is no longer directed towards the road. Inattention contributes to crashes, especially for professional drivers. Monotony has been studied mainly from the endogenous perspective (for instance through sleep deprivation) without taking into account the influence of the task itself (repetitiveness) or the surrounding environment. The aim and novelty of this thesis is to develop a methodology (mathematical framework) able to predict driver lapses of vigilance under monotonous environments in real time, using endogenous and exogenous data collected from the driver, the vehicle and the environment. Existing approaches have tended to neglect the specificity of task monotony, leaving the question of the existence of a “monotonous state” unanswered. Furthermore the issue of detecting vigilance decrement before it occurs (predictions) has not been investigated in the literature, let alone in real time. A multidisciplinary approach is necessary to explain how vigilance evolves in monotonous conditions. Such an approach needs to draw on psychology, physiology, road safety, computer science and mathematics. The systemic approach proposed in this study is unique with its predictive dimension and allows us to define, in real time, the impacts of monotony on the driver’s ability to drive. Such methodology is based on mathematical models integrating data available in vehicles to the vigilance state of the driver during a monotonous driving task in various environments. The model integrates different data measuring driver’s endogenous and exogenous factors (related to the driver, the vehicle and the surrounding environment). Electroencephalography (EEG) is used to measure driver vigilance since it has been shown to be the most reliable and real time methodology to assess vigilance level. There are a variety of mathematical models suitable to provide a framework for predictions however, to find the most accurate model, a collection of mathematical models were trained in this thesis and the most reliable was found. The methodology developed in this research is first applied to a theoretically sound measure of sustained attention called Sustained Attention Response to Task (SART) as adapted by Michael (2010), Michael and Meuter (2006, 2007). This experiment induced impairments due to monotony during a vigilance task. Analyses performed in this thesis confirm and extend findings from Michael (2010) that monotony leads to an important vigilance impairment independent of fatigue. This thesis is also the first to show that monotony changes the dynamics of vigilance evolution and tends to create a “monotonous state” characterised by reduced vigilance. Personality traits such as being a low sensation seeker can mitigate this vigilance decrement. It is also evident that lapses in vigilance can be predicted accurately with Bayesian modelling and Neural Networks. This framework was then applied to the driving task by designing a simulated monotonous driving task. The design of such task requires multidisciplinary knowledge and involved psychologist Rebecca Michael. Monotony was varied through both the road design and the road environment variables. This experiment demonstrated that road monotony can lead to driving impairment. Particularly monotonous road scenery was shown to have the most impact compared to monotonous road design. Next, this study identified a variety of surrogate measures that are correlated with vigilance levels obtained from the EEG. Such vigilance states can be predicted with these surrogate measures. This means that vigilance decrement can be detected in a car without the use of an EEG device. Amongst the different mathematical models tested in this thesis, only Neural Networks predicted the vigilance levels accurately. The results of both these experiments provide valuable information about the methodology to predict vigilance decrement. Such an issue is quite complex and requires modelling that can adapt to highly inter-individual differences. Only Neural Networks proved accurate in both studies, suggesting that these models are the most likely to be accurate when used on real roads or for further research on vigilance modelling. This research provides a better understanding of the driving task under monotonous conditions. Results demonstrate that mathematical modelling can be used to determine the driver’s vigilance state when driving using surrogate measures identified during this study. This research has opened up avenues for future research and could result in the development of an in-vehicle device predicting driver vigilance decrement. Such a device could contribute to a reduction in crashes and therefore improve road safety.
Resumo:
A national-level safety analysis tool is needed to complement existing analytical tools for assessment of the safety impacts of roadway design alternatives. FHWA has sponsored the development of the Interactive Highway Safety Design Model (IHSDM), which is roadway design and redesign software that estimates the safety effects of alternative designs. Considering the importance of IHSDM in shaping the future of safety-related transportation investment decisions, FHWA justifiably sponsored research with the sole intent of independently validating some of the statistical models and algorithms in IHSDM. Statistical model validation aims to accomplish many important tasks, including (a) assessment of the logical defensibility of proposed models, (b) assessment of the transferability of models over future time periods and across different geographic locations, and (c) identification of areas in which future model improvements should be made. These three activities are reported for five proposed types of rural intersection crash prediction models. The internal validation of the model revealed that the crash models potentially suffer from omitted variables that affect safety, site selection and countermeasure selection bias, poorly measured and surrogate variables, and misspecification of model functional forms. The external validation indicated the inability of models to perform on par with model estimation performance. Recommendations for improving the state of the practice from this research include the systematic conduct of carefully designed before-and-after studies, improvements in data standardization and collection practices, and the development of analytical methods to combine the results of before-and-after studies with cross-sectional studies in a meaningful and useful way.
Resumo:
One major gap in transportation system safety management is the ability to assess the safety ramifications of design changes for both new road projects and modifications to existing roads. To fulfill this need, FHWA and its many partners are developing a safety forecasting tool, the Interactive Highway Safety Design Model (IHSDM). The tool will be used by roadway design engineers, safety analysts, and planners throughout the United States. As such, the statistical models embedded in IHSDM will need to be able to forecast safety impacts under a wide range of roadway configurations and environmental conditions for a wide range of driver populations and will need to be able to capture elements of driving risk across states. One of the IHSDM algorithms developed by FHWA and its contractors is for forecasting accidents on rural road segments and rural intersections. The methodological approach is to use predictive models for specific base conditions, with traffic volume information as the sole explanatory variable for crashes, and then to apply regional or state calibration factors and accident modification factors (AMFs) to estimate the impact on accidents of geometric characteristics that differ from the base model conditions. In the majority of past approaches, AMFs are derived from parameter estimates associated with the explanatory variables. A recent study for FHWA used a multistate database to examine in detail the use of the algorithm with the base model-AMF approach and explored alternative base model forms as well as the use of full models that included nontraffic-related variables and other approaches to estimate AMFs. That research effort is reported. The results support the IHSDM methodology.