294 resultados para Enhanced recovery
Resumo:
This study aims to understand the process of change in self and its relationship to recovery in the first 3 months following first-episode psychosis (FEP). Because psychosis is understood as a disorder of self, theories of self are needed to consider how sense of self is affected and restored. The authors used semistructured interviews to explore the experiences of 12 young people who had been diagnosed with FEP. The interviews were conducted at two time points: during the first month following the onset of psychosis and 3 months later. The authors employed Interpretive Phenomenological Analysis to explicate interview data and explore the experience of change following FEP. Themes that emerged in the data came under two superordinate themes: loss of self and strengthening of self. Dialogical theory of self was used to interpret the findings and explore the relationship between sense of self and recovery for young people during this critical phase following FEP.
Resumo:
Objective The objective of this study was to explore the subjective factors associated with the experience of first-episode psychosis (FEP) and the very first stages of recovery to develop our understanding of this process and improve treatment outcomes. Method Interpretive Phenomenological Analysis was used to explore the experiences of 20 young people who had recently experienced FEP. Results Two broad superordinate themes captured essential thematic trends in the data: experiences of self-estrangement and self-consolidation. The concept of dialogical self was used to understand the effect of psychosis on self and the process of resuming familiar social positions to facilitate recovery. The concept of making meaning after traumatic events was also applied to the narratives of personal growth that participants formed. Those who reported subjective improvements in recovery were more likely to have developed a meaningful interpretation of their psychosis, strengthened relationships with others, and forged a stronger sense of self. Conclusions and Implications for Practice The experience of self-consolidation was strongly associated with the person’s resumption of familiar social roles and their ability to make meaning from their experience in a way that promoted personal growth. Although these processes are known to be part of personal recovery, this study highlights their importance in the very early stages of recovery immediately after the experience of FEP.
Resumo:
A facile and sensitive surface-enhanced Raman scattering substrate was prepared by controlled potentiostatic deposition of a closely packed single layer of gold nanostructures (AuNS) over a flat gold (pAu) platform. The nanometer scale inter-particle distance between the particles resulted in high population of ‘hot spots’ which enormously enhanced the scattered Raman photons. A renewed methodology was followed to precisely quantify the SERS substrate enhancement factor (SSEF) and it was estimated to be (2.2 ± 0.17) × 105. The reproducibility of the SERS signal acquired by the developed substrate was tested by establishing the relative standard deviation (RSD) of 150 repeated measurements from various locations on the substrate surface. A low RSD of 4.37 confirmed the homogeneity of the developed substrate. The sensitivity of pAu/AuNS was proven by determining 100 fM 2,4,6-trinitrotoluene (TNT) comfortably. As a proof of concept on the potential of the new pAu/AuNS substrate in field analysis, TNT in soil and water matrices was selectively detected after forming a Meisenheimer complex with cysteamine.
Resumo:
We report rapid and ultra-sensitive detection system for 2,4,6-trinitrotoluene (TNT) using unmodified gold nanoparticles and surface-enhanced Raman spectroscopy (SERS). First, Meisenheimer complex has been formed in aqueous solution between TNT and cysteamine in less than 15 min of mixing. The complex formation is confirmed by the development of a pink colour and a new UV–vis absorption band around 520 nm. Second, the developed Meisenheimer complex is spontaneously self-assembled onto unmodified gold nanoparticles through a stable Au–S bond between the cysteamine moiety and the gold surface. The developed mono layer of cysteamine-TNT is then screened by SERS to detect and quantify TNT. Our experimental results demonstrate that the SERS-based assay provide an ultra-sensitive approach for the detection of TNT down to 22.7 ng/L. The unambiguous fingerprint identification of TNT by SERS represents a key advantage for our proposed method. The new method provides high selectivity towards TNT over 2,4 DNT and picric acid. Therefore it satisfies the practical requirements for the rapid screening of TNT in real life samples where the interim 24-h average allowable concentration of TNT in waste water is 0.04 mg/L.
Resumo:
Higher education is becoming a major driver of economic competitiveness in an increasingly knowledge-driven global economy. Maintaining the competitive edge has seen an increase in public accountability of higher education institutions through the mechanism of ranking universities based on the quality of their teaching and learning outcomes. As a result, assessment processes are under scrutiny, creating tensions between standardisation and measurability and the development of creative and reflective learners. These tensions are further highlighted in the context of large undergraduate subjects, learner diversity and time-poor academics and students. Research suggests that high level and complex learning is best developed when assessment, combined with effective feedback practices, involves students as partners in these processes. This article reports on a four-phase, cross-institution and cross-discipline project designed to embed peer-review processes as part of the assessment in two large, undergraduate accounting classes. Using a social constructivist view of learning, which emphasises the role of both teacher and learner in the development of complex cognitive understandings, we undertook an iterative process of peer review. Successive phases built upon students’ feedback and achievements and input from language/learning and curriculum experts to improve the teaching and learning outcomes.
Resumo:
OBJECTIVE Impaired regulation of the hypothalamic-pituitary-adrenal (HPA) axis and hyper-activity of this system have been described in patients with psychosis. Conversely, some psychiatric disorders such as post-traumatic stress disorder (PTSD) are characterised by HPA hypo-activity, which could be related to prior exposure to trauma. This study examined the cortisol response to the administration of low-dose dexamethasone in first-episode psychosis (FEP) patients and its relationship to childhood trauma. METHOD The low-dose (0.25 mg) Dexamethasone Suppression Test (DST) was performed in 21 neuroleptic-naive or minimally treated FEP patients and 20 healthy control participants. Childhood traumatic events were assessed in all participants using the Childhood Trauma Questionnaire (CTQ) and psychiatric symptoms were assessed in patients using standard rating scales. RESULTS FEP patients reported significantly higher rates of childhood trauma compared to controls (p = 0.001) and exhibited lower basal (a.m.) cortisol (p = 0.04) and an increased rate of cortisol hyper-suppression following dexamethasone administration compared to controls (33% (7/21) vs 5% (1/20), respectively; p = 0.04). There were no significant group differences in mean cortisol decline or percent cortisol suppression following the 0.25 mg DST. This study shows for the first time that a subset of patients experiencing their first episode of psychosis display enhanced cortisol suppression. CONCLUSIONS These findings suggest there may be distinct profiles of HPA axis dysfunction in psychosis which should be further explored.
Resumo:
There’s growing evidence that psychosis is linked to the physical environments that we live in. Good environments are the ones that allow people to step back, relax and feel secure, while engaging in interesting and meaningful activity. Bad environments don’t allow respite: they keep people on their toes and somehow magnify meaninglessness and hollow rules and unreasonable demands. They may also be bleak and even unfair or outright scary. But don’t expect everyone to notice the bad environments: recent studies demonstrate that patients with psychosis are far more likely to notice even subtle negative features in the environment than people without symptoms. The same patients are also less likely to notice the good things an environment has to offer – but that doesn’t mean they shouldn’t be provided.
Resumo:
Ultra-endurance exercise, such as an Ironman triathlon, induces muscle damage and a systemic inflammatory response. As the resolution of recovery in these parameters is poorly documented, we investigated indices of muscle damage and systemic inflammation in response to an Ironman triathlon and monitored these parameters 19 days into recovery. Blood was sampled from 42 well-trained male triathletes 2 days before, immediately after, and 1, 5 and 19 days after an Ironman triathlon. Blood samples were analyzed for hematological profile, and plasma values of myeloperoxidase (MPO), polymorphonuclear (PMN) elastase, cortisol, testosterone, creatine kinase (CK) activity, myoglobin, interleukin (IL)-6, IL-10 and high-sensitive C-reactive protein (hs-CRP). Immediately post-race there were significant (P < 0.001) increases in total leukocyte counts, MPO, PMN elastase, cortisol, CK activity, myoglobin, IL-6, IL-10 and hs-CRP, while testosterone significantly (P < 0.001) decreased compared to prerace. With the exception of cortisol, which decreased below prerace values (P < 0.001), these alterations persisted 1 day post-race (P < 0.001; P < 0.01 for IL-10). Five days post-race CK activity, myoglobin, IL-6 and hs-CRP had decreased, but were still significantly (P < 0.001) elevated. Nineteen days post-race most parameters had returned to prerace values, except for MPO and PMN elastase, which had both significantly (P < 0.001) decreased below prerace concentrations, and myoglobin and hs-CRP, which were slightly, but significantly higher than prerace. Furthermore, significant relationships between leukocyte dynamics, cortisol, markers of muscle damage, cytokines and hs-CRP after the Ironman triathlon were noted. This study indicates that the pronounced initial systemic inflammatory response induced by an Ironman triathlon declines rapidly. However, a low-grade systemic inflammation persisted until at least 5 days post-race, possibly reflecting incomplete muscle recovery.
Resumo:
Antioxidant requirements have neither been defined for endurance nor been defined for ultra-endurance athletes. To verify whether an acute bout of ultra-endurance exercise modifies the need for nutritive antioxidants, we aimed (1) to investigate the changes of endogenous and exogenous antioxidants in response to an Ironman triathlon; (2) to particularise the relevance of antioxidant responses to the indices of oxidatively damaged blood lipids, blood cell compounds and lymphocyte DNA and (3) to examine whether potential time-points of increased susceptibility to oxidative damage are associated with alterations in the antioxidant status. Blood that was collected from forty-two well-trained male athletes 2 d pre-race, immediately post-race, and 1, 5 and 19 d later was sampled. The key findings of the present study are as follows: (1) Immediately post-race, vitamin C, alpha-tocopherol, and levels of the Trolox equivalent antioxidant capacity, the ferric reducing ability of plasma and the oxygen radical absorbance capacity (ORAC) assays increased significantly. Exercise-induced changes in the plasma antioxidant capacity were associated with changes in uric acid, bilirubin and vitamin C. (2) Significant inverse correlations between ORAC levels and indices of oxidatively damaged DNA immediately and 1 d post-race suggest a protective role of the acute antioxidant responses in DNA stability. (3) Significant decreases in carotenoids and gamma-tocopherol 1 d post-race indicate that the antioxidant intake during the first 24 h of recovery following an acute ultra-endurance exercise requires specific attention. Furthermore, the present study illustrates the importance of a diversified and well-balanced diet to maintain a physiological antioxidant status in ultra-endurance athletes in reference to recommendations.
Resumo:
2,4,6-trinitrotoluene (TNT) is one of the most commonly used nitro aromatic explosives in landmine, military and mining industry. This article demonstrates rapid and selective identification of TNT by surface-enhanced Raman spectroscopy (SERS) using 6-aminohexanethiol (AHT) as a new recognition molecule. First, Meisenheimer complex formation between AHT and TNT is confirmed by the development of pink colour and appearance of new band around 500 nm in UV-visible spectrum. Solution Raman spectroscopy study also supported the AHT:TNT complex formation by demonstrating changes in the vibrational stretching of AHT molecule between 2800-3000 cm−1. For surface enhanced Raman spectroscopy analysis, a self-assembled monolayer (SAM) of AHT is formed over the gold nanostructure (AuNS) SERS substrate in order to selectively capture TNT onto the surface. Electrochemical desorption and X-ray photoelectron studies are performed over AHT SAM modified surface to examine the presence of free amine groups with appropriate orientation for complex formation. Further, AHT and butanethiol (BT) mixed monolayer system is explored to improve the AHT:TNT complex formation efficiency. Using a 9:1 AHT:BT mixed monolayer, a very low detection limit (LOD) of 100 fM TNT was realized. The new method delivers high selectivity towards TNT over 2,4 DNT and picric acid. Finally, real sample analysis is demonstrated by the extraction and SERS detection of 302 pM of TNT from spiked.
Resumo:
Title The trajectory of minor stroke recovery for men and their female spousal caregivers: literature review Aim This paper is a report of a narrative review to examine the current state of knowledge regarding the impact of minor stroke on male patients and their female spousal caregivers’ recovery trajectory and quality of life. Background Minor stroke survivors are often discharged early in the recovery process. The perception of the healthcare community that these patients and their female spousal caregivers will experience an uneventful recovery may lead to inadequate preparation for the postdischarge period. Methods A range of databases was searched to identify papers addressing ‘minor stroke’, ‘transitions’, ‘quality of life’, ‘chronic disease’, ‘caregivers’ and ‘spouse caregivers’, including AARP Ageline, AMED, CINAHL, Evidence Based Medicine Reviews, MEDLINE and PsychInfo. Papers published in English from 1990 to December 2006 were included. Thirty-four papers were in the final data set. Results Minor stroke survivors and their female spousal caregivers may experience major challenges in adaptations postdischarge. The trajectory of minor stroke recovery may necessitate a re-evaluation of life plans, rethinking of priorities and integration of resulting disabilities into current and emerging life situations for both stroke survivors and their female spousal caregivers. In many cases these adaptations are compounded by transitions associated with the normal ageing process. Conclusion While there is extensive literature on stroke recovery and the role of caregivers in general, there is little available describing the recovery of minor stroke survivors in relation to the normal ageing process. Further research is needed examining recovery from a transitional perspective, to support nurses and other health professionals discharge planning.
Resumo:
Cold water immersion (CWI) and active recovery (ACT) are frequently used as post-exercise recovery strategies. However, the physiological effects of CWI and ACT after resistance exercise are not well characterized. We examined the effects of CWI and ACT on cardiac output (Q), muscle oxygenation (SmO2) and blood volume (tHb), muscle temperature (Tmuscle ) and isometric strength after resistance exercise. On separate days, 10 men performed resistance exercise, followed by 10 min CWI at 10°C or 10 min ACT (low-intensity cycling). Q (7.9±2.7 l) and Tmuscle (2.2±0.8ºC) increased, whereas SmO2 (-21.5±8.8%) and tHb (-10.1±7.7 μM) decreased after exercise (p<0.05). During CWI, Q ̇(-1.1±0.7 l) and Tmuscle (-6.6±5.3ºC) decreased, while tHb (121±77 μM) increased (p<0.05). In the hour after CWI, Q ̇and Tmuscle remained low, while tHb also decreased (p<0.05). By contrast, during ACT, Q ̇(3.9±2.3 l), Tmuscle (2.2±0.5ºC), SmO2 (17.1±5.7%) and tHb (91±66 μM) all increased (p<0.05). In the hour after ACT, Tmuscle and tHb remained high (p<0.05). Peak isometric strength during 10 s maximum voluntary contractions (MVCs) did not change significantly after CWI, whereas it decreased after ACT (-30 to -45 Nm; p<0.05). Muscle deoxygenation time during MVCs increased after ACT (p<0.05), but not after CWI. Muscle reoxygenation time after MVCs tended to increase after CWI (p=0.052). These findings suggest firstly that hemodynamics and muscle temperature after resistance exercise are dependent on ambient temperature and metabolic demands with skeletal muscle, and secondly, that recovery of strength after resistance exercise is independent of changes in hemodynamics and muscle temperature.
Resumo:
Bottom emitting organic light emitting diodes (OLEDs) can suffer from lower external quantum efficiencies (EQE) due to inefficient out-coupling of the generated light. Herein, it is demonstrated that the current efficiency and EQE of red, yellow, and blue fluorescent single layer polymer OLEDs is significantly enhanced when a MoOx(5 nm)/Ag(10 nm)/MoOx(40 nm) stack is used as the transparent anode in a top emitting OLED structure. A maximum current efficiency and EQE of 21.2 cd/A and 6.7%, respectively, was achieved for a yellow OLED, while a blue OLED achieved a maximum of 16.5 cd/A and 10.1%, respectively. The increase in light out-coupling from the top-emitting OLEDs led to increase in efficiency by a factor of up to 2.2 relative to the optimised bottom emitting devices, which is the best out-coupling reported using solution processed polymers in a simple architecture and a significant step forward for their use in large area lighting and displays.
Resumo:
Research on development of efficient passivation materials for high performance and stable quantum dot sensitized solar cells (QDSCs) is highly important. While ZnS is one of the most widely used passivation material in QDSCs, an alternative material based on ZnSe which was deposited on CdS/CdSe/TiO2 photoanode to form a semi-core/shell structure has been found to be more efficient in terms of reducing electron recombination in QDSCs in this work. It has been found that the solar cell efficiency was improved from 1.86% for ZnSe0 (without coating) to 3.99% using 2 layers of ZnSe coating (ZnSe2) deposited by successive ionic layer adsorption and reaction (SILAR) method. The short circuit current density (Jsc) increased nearly 1-fold (from 7.25 mA/cm2 to13.4 mA/cm2), and the open circuit voltage (Voc) was enhanced by 100 mV using ZnSe2 passivation layer compared to ZnSe0. Studies on the light harvesting efficiency (ηLHE) and the absorbed photon-to-current conversion efficiency (APCE) have revealed that the ZnSe coating layer caused the enhanced ηLHE at wavelength beyond 500 nm and a significant increase of the APCE over the spectrum 400−550 nm. A nearly 100% APCE was obtained with ZnSe2, indicating the excellent charge injection and collection process in the device. The investigation on charge transport and recombination of the device has indicated that the enhanced electron collection efficiency and reduced electron recombination should be responsible for the improved Jsc and Voc of the QDSCs. The effective electron lifetime of the device with ZnSe2 was nearly 6 times higher than ZnSe0 while the electron diffusion coefficient was largely unaffected by the coating. Study on the regeneration of QDs after photoinduced excitation has indicated that the hole transport from QDs to the reduced species (S2−) in electrolyte was very efficient even when the QDs were coated with a thick ZnSe shell (three layers). For comparison, ZnS coated CdS/CdSe sensitized solar cell with optimum shell thickness was also fabricated, which generated a lower energy conversion efficiency (η = 3.43%) than the ZnSe based QDSC counterpart due to a lower Voc and FF. This study suggests that ZnSe may be a more efficient passivation layer than ZnS, which is attributed to the type II energy band alignment of the core (CdS/CdSe quantum dots) and passivation shell (ZnSe) structure, leading to more efficient electron−hole separation and slower electron recombination.
Resumo:
During post-disaster recovery, an infrastructure system may be subject to a number of disturbances originating from several other interdependent infrastructures. These disturbances might result in a series of system failures, thereby having immediate impact on societal living conditions. The inability to detect signs of disturbance from one infrastructure during recovery might cause significant disruptive effects on other infrastructure via the interconnection that exist among them. In such circumstances, it clearly appears that critical infrastructures' interdependencies affect the recovery of each individual infrastructure, as well as those of other interdependent infrastructure systems. This is why infrastructure resilience needs to be improved in function of those interdependencies, particularly during the recovery period to avoid the occurrence of a ‘disaster of disaster’ scenario. Viewed from this perspective, resilience is achieved through an inter-organisational collaboration between the different organisations involved in the reconstruction of interdependent infrastructure systems. This paper suggests that to some extent, the existing degree of interconnectedness between these infrastructure systems can also be found in their resilience ability during post-disaster recovery. For instance, without a resilient energy system, a large-scale power outage could affect simultaneously all the interdependent infrastructures after a disaster. Thus, breaking down the silos of resilience would be the first step in minimizing the risks of disaster failures from one infrastructure to cascade or escalate to other interconnected systems.